Read more

Given:

  • Weight of rail carrier (W) = 200 kN = 200,000 N

  • Velocity (v) = 5 km/h = 5×10003600=1.389m/s

  • Number of springs (n) = 4

  • Spring index (C) = Dd=5

  • Deflection per spring (δ) = 220 mm = 0.22 m

  • Maximum allowable shear stress (Ï„) = 400 MPa = 400×106Pa

  • Modulus of rigidity (G) = 80,000 MPa = 80×109Pa

  • Ends of the spring are squared and ground.

Step 1: Calculate the Kinetic Energy Absorbed by the Springs

The kinetic energy of the rail carrier is absorbed by the 4 springs:

KE=12mv2

First, find the mass (m):

m=Wg=200,0009.81=20,387.36kg

Now, calculate KE:

KE=12×20,387.36×(1.389)2=19,684.5J

This energy is absorbed by 4 springs:

KEper spring=19,684.54=4,921.13J

Step 2: Relate Energy to Spring Parameters

The energy stored in a spring is:

E=12Pδ

Where P is the load on the spring and Î´ is the deflection.

4,921.13=12×P×0.22P=4,921.13×20.22=44,737.5N

Maximum load on each spring (P) = 44.74 kN

Step 3: Find Wire Diameter (d)

The shear stress in the spring is given by:

Ï„=K8PCÏ€d2

Where K is Wahl's correction factor:

K=4C14C4+0.615C=4×514×54+0.6155=1.3105

Now, substitute Ï„=400×106P=44,737.5C=5:

400×106=1.3105×8×44,737.5×5Ï€d2d2=1.3105×8×44,737.5×5Ï€×400×106d2=0.001865d=0.001865=0.0432m=43.2mm

Wire diameter (d) = 43.2 mm

Step 4: Find Coil Diameter (D)

Given C=Dd=5:

D=5d=5×43.2=216mm

Coil diameter (D) = 216 mm

Step 5: Find Number of Turns (N)

The deflection formula for a spring is:

δ=8PD3NGd4

Given Î´=0.22mP=44,737.5ND=0.216mG=80×109Pad=0.0432m:

0.22=8×44,737.5×(0.216)3N80×109×(0.0432)40.22=8×44,737.5×0.01008N80×109×3.49×1060.22=3,612.6N279.2×103N=0.22×279.2×1033,612.6=17turns

Number of active turns (N) = 17

Step 6: Find Free Length (Lf)

For squared and ground ends, the free length is:

Lf=(N+2)d+δ+0.15δLf=(17+2)×43.2+220+0.15×220Lf=19×43.2+220+33=820.8+220+33=1,073.8mm

Free length (Lf) = 1,074 mm

Final Answers:

  • Maximum load on each spring (P) = 44.74 kN

  • Wire diameter (d) = 43.2 mm

  • Coil diameter (D) = 216 mm

  • Number of active turns (N) = 17

  • Free length of the spring (Lf) = 1,074 mm

0 Reviews

Contact form

Name

Email *

Message *