Given: Weight of rail carrier (W) = 200 kN = 200,000 N
Velocity (v) = 5 km/h = 5 × 1000 3600 = 1.389 m/s 3600 5 × 1000 = 1.389 m/s
Number of springs (n) = 4
Spring index (C) = D d = 5 d D = 5
Deflection per spring (δ) = 220 mm = 0.22 m
Maximum allowable shear stress (Ï„) = 400 MPa = 400 × 10 6 Pa 400 × 1 0 6 Pa
Modulus of rigidity (G) = 80,000 MPa = 80 × 10 9 Pa 80 × 1 0 9 Pa
Ends of the spring are squared and ground.
Step 1: Calculate the Kinetic Energy Absorbed by the Springs The kinetic energy of the rail carrier is absorbed by the 4 springs:
K E = 1 2 m v 2 K E = 2 1 m v 2
First, find the mass (m m ):
m = W g = 200 , 000 9.81 = 20 , 387.36 kg m = g W = 9.81 200 , 000 = 20 , 387.36 kg
Now, calculate K E K E :
K E = 1 2 × 20 , 387.36 × ( 1.389 ) 2 = 19 , 684.5 J K E = 2 1 × 20 , 387.36 × ( 1.389 ) 2 = 19 , 684.5 J
This energy is absorbed by 4 springs:
K E per spring = 19 , 684.5 4 = 4 , 921.13 J K E per spring = 4 19 , 684.5 = 4 , 921.13 J
Step 2: Relate Energy to Spring Parameters The energy stored in a spring is:
E = 1 2 P δ E = 2 1 P δ
Where P P is the load on the spring and δ δ is the deflection.
4 , 921.13 = 1 2 × P × 0.22 4 , 921.13 = 2 1 × P × 0.22 P = 4 , 921.13 × 2 0.22 = 44 , 737.5 N P = 0.22 4 , 921.13 × 2 = 44 , 737.5 N
Maximum load on each spring (P P ) = 44.74 kN
Step 3: Find Wire Diameter (d d ) The shear stress in the spring is given by:
τ = K 8 P C π d 2 τ = K π d 2 8 PC
Where K K is Wahl's correction factor:
K = 4 C − 1 4 C − 4 + 0.615 C = 4 × 5 − 1 4 × 5 − 4 + 0.615 5 = 1.3105 K = 4 C − 4 4 C − 1 + C 0.615 = 4 × 5 − 4 4 × 5 − 1 + 5 0.615 = 1.3105
Now, substitute Ï„ = 400 × 10 6 Ï„ = 400 × 1 0 6 , P = 44 , 737.5 P = 44 , 737.5 , C = 5 C = 5 :
400 × 10 6 = 1.3105 × 8 × 44 , 737.5 × 5 Ï€ d 2 400 × 1 0 6 = 1.3105 × Ï€ d 2 8 × 44 , 737.5 × 5 d 2 = 1.3105 × 8 × 44 , 737.5 × 5 Ï€ × 400 × 10 6 d 2 = Ï€ × 400 × 1 0 6 1.3105 × 8 × 44 , 737.5 × 5 d 2 = 0.001865 d 2 = 0.001865 d = 0.001865 = 0.0432 m = 43.2 mm d = 0.001865 = 0.0432 m = 43.2 mm
Wire diameter (d d ) = 43.2 mm
Step 4: Find Coil Diameter (D D ) Given C = D d = 5 C = d D = 5 :
D = 5 d = 5 × 43.2 = 216 mm D = 5 d = 5 × 43.2 = 216 mm
Coil diameter (D D ) = 216 mm
Step 5: Find Number of Turns (N N ) The deflection formula for a spring is:
δ = 8 P D 3 N G d 4 δ = G d 4 8 P D 3 N
Given δ = 0.22 m δ = 0.22 m , P = 44 , 737.5 N P = 44 , 737.5 N , D = 0.216 m D = 0.216 m , G = 80 × 10 9 Pa G = 80 × 1 0 9 Pa , d = 0.0432 m d = 0.0432 m :
0.22 = 8 × 44 , 737.5 × ( 0.216 ) 3 N 80 × 10 9 × ( 0.0432 ) 4 0.22 = 80 × 1 0 9 × ( 0.0432 ) 4 8 × 44 , 737.5 × ( 0.216 ) 3 N 0.22 = 8 × 44 , 737.5 × 0.01008 N 80 × 10 9 × 3.49 × 10 − 6 0.22 = 80 × 1 0 9 × 3.49 × 1 0 − 6 8 × 44 , 737.5 × 0.01008 N 0.22 = 3 , 612.6 N 279.2 × 10 3 0.22 = 279.2 × 1 0 3 3 , 612.6 N N = 0.22 × 279.2 × 10 3 3 , 612.6 = 17 turns N = 3 , 612.6 0.22 × 279.2 × 1 0 3 = 17 turns
Number of active turns (N N ) = 17
Step 6: Find Free Length (L f L f ) For squared and ground ends, the free length is:
L f = ( N + 2 ) d + δ + 0.15 δ L f = ( N + 2 ) d + δ + 0.15 δ L f = ( 17 + 2 ) × 43.2 + 220 + 0.15 × 220 L f = ( 17 + 2 ) × 43.2 + 220 + 0.15 × 220 L f = 19 × 43.2 + 220 + 33 = 820.8 + 220 + 33 = 1 , 073.8 mm L f = 19 × 43.2 + 220 + 33 = 820.8 + 220 + 33 = 1 , 073.8 mm
Free length (L f L f ) = 1,074 mm
Final Answers: Maximum load on each spring (P P ) = 44.74 kN
Wire diameter (d d ) = 43.2 mm
Coil diameter (D D ) = 216 mm
Number of active turns (N N ) = 17
Free length of the spring (L f L f ) = 1,074 mm
0 Reviews