A block of mass 5 kg moves along the x-direction subject to the force F = (−20x + 10) N, with the value of x in metre. At time t= 0 s, it is at rest at position x = 1 m. The position and momentum of the block at t = (pi/4) s are

 The Harmonic Dance of a Block: A Journey Through Force and Motion


Question Revisited

A block of mass 5kg moves along the x-axis under the influence of the force F=(20x+10)N, where x is in meters. At t=0s, the block is at rest at x=1m. Determine its position and momentum at t=π4s.
Options:
(A)
(B)
(C)
(D)


Historical Context

The study of oscillatory motion dates back to Galileo’s observation of chandeliers swinging in Pisa Cathedral, leading to the concept of simple harmonic motion (SHM). The force law F=kx governs SHM, but here, the force F=20x+10 introduces a twist—a shifted equilibrium point. This mirrors real-world systems like pendulums in accelerating frames or charged particles in electric fields with constant offsets.


Understanding the Force

The force F=20x+10 can be rewritten as:

F=20(x0.5),

revealing a shifted harmonic oscillator with:

  • Equilibrium positionxeq=0.5m,

  • Effective spring constantk=20N/m.

The block oscillates around x=0.5m, not x=0.


Equation of Motion

For SHM, angular frequency ω=km=205=2rad/s.
Let x(t)=x(t)xeq (displacement from equilibrium). The solution is:

x(t)=Acos(ωt+ϕ),

where A is the amplitude and ϕ is the phase.

Initial Conditions:

  • At t=0x=1mx=10.5=0.5m,

  • Velocity v(0)=0dxdt=Aωsin(ϕ)=0ϕ=0.

Thus, x(t)=0.5cos(2t), so:

x(t)=0.5+0.5cos(2t).

Position at t=π4s

Substitute t=π4:

x(π4)=0.5+0.5cos(2π4)=0.5+0.5cos(π2).

Since cos(π2)=0:

x(π4)=0.5m.

Momentum at t=π4s

Velocity v(t)=dxdt=0.52sin(2t)=sin(2t).
At t=π4:

v(π4)=sin(2π4)=sin(π2)=1m/s.

Momentum .


Real-World Analogy

Imagine a spring attached to a cart on a track, with the spring’s equilibrium shifted by a constant force (e.g., a fan blowing air). The cart oscillates around the new equilibrium, just like this block. The math mirrors quantum harmonic oscillators or AC circuits with DC offsets!


Critical Analysis of Options

  • (A) Incorrect: Negative position contradicts cos-based oscillation.

  • (B) Incorrect: Zero momentum implies zero velocity, but sin(π/2)0.

  • (C) Correct: Matches x=0.5m and .

  • (D) Incorrect: Position 1m violates equilibrium at 0.5m.


Final Answer:

Correct Option(C)

Comments