An electric dipole is formed by two charges +𝑞 and −𝑞 located in 𝑥𝑦-plane at (0,2) mm and (0, −2) mm, respectively, as shown in the figure. The electric potential at point P (100,100) mm due to the dipole is 𝑉0. The charges +𝑞 and −𝑞 are then moved to the points (−1,2) mm and (1, −2) mm, respectively. What is the value of electric potential at P due to the new dipole? (A) 𝑉0/4 (B) 𝑉0/2 (C) 𝑉0/√2 (D) 3𝑉0/4

To determine the electric potential at point P due to the new dipole configuration, we need to understand how the electric potential of a dipole behaves and how it changes with the orientation and position of the dipole.

Step 1: Understanding the Electric Potential of a Dipole

The electric potential V at a point due to a dipole is given by:

V=14πϵ0prr3

where:

  • p is the dipole moment vector,

  • r is the position vector from the dipole to the point where the potential is being calculated,

  • r is the magnitude of r,

  • ϵ0 is the permittivity of free space.

The dipole moment p is defined as:

p=qd

where q is the charge and d is the displacement vector from the negative charge to the positive charge.

Step 2: Initial Configuration

In the initial configuration:

  • The positive charge +q is at (0,2) mm.

  • The negative charge q is at (0,2) mm.

The dipole moment p1 is:

p1=qd1=q((0,2)(0,2))=q(0,4) mm

The position vector r from the dipole to point P at (100,100) mm is:

r=(100,100) mm

The electric potential V0 at point P due to the initial dipole is:

V0=14πϵ0p1rr3

Step 3: New Configuration

In the new configuration:

  • The positive charge +q is moved to (1,2) mm.

  • The negative charge q is moved to (1,2) mm.

The new dipole moment p2 is:

p2=qd2=q((1,2)(1,2))=q(2,4) mm

The position vector r remains the same:

r=(100,100) mm

The electric potential V at point P due to the new dipole is:

V=14πϵ0p2rr3

Step 4: Comparing the Potentials

To find the ratio VV0, we compare the dot products p1r and p2r:

p1r=(0,4)(100,100)=0×100+4×100=400p2r=(2,4)(100,100)=2×100+4×100=200+400=200

Thus, the ratio is:

VV0=p2rp1r=200400=12

Therefore, the electric potential at point P due to the new dipole is:

V=V02

Final Answer

(B) V0/2

Comments