A particle of mass m is moving in a circular orbit under the influence of the central force F(r) = −kr, corresponding to the potential energy V(r) = kr2/2, where k is a positive force constant and r is the radial distance from the origin. According to the Bohr’s quantization rule, the angular momentum of the particle is given by L = nℏ, where ℏ = ℎ/(2pi), ℎ is the Planck’s constant, and n a positive integer. If v and F are the speed and total energy of the particle, respectively, then which of the following expression(s) is(are) correct? (A) r2 = nℏ√ 1/mk (B) v2 = nℏ√k/m3 (C) L/mr2 = √k/m (D) E = nℏ/ 2 √k/m

 The Quantum Harmonic Oscillator: Bohr’s Quantization Meets Central Forces


Rewritten Question

A particle of mass m orbits under the central force F(r)=kr (potential V(r)=12kr2) and follows Bohr’s quantization rule L=n. Which of the following are correct?
(A) r2=n1mk
(B) v2=nkm3
(C) Lmr2=km
(D) E=n2km


Historical Context

Niels Bohr’s 1913 model quantized angular momentum (L=n) to explain atomic spectra. While originally for Coulomb forces, this problem adapts it to a harmonic oscillator force (F=kr), akin to springs or molecular vibrations. Such systems bridge classical mechanics and quantum theory.


Key Physics and Equations

  1. Force Balance:
    Centripetal force = Central force:

    mv2r=kr    v2=kr2m.(1)
  2. Bohr Quantization:
    Angular momentum


Step-by-Step Analysis

Option (A): r2=n1mk

Substitute v from (2) into (1):

(nmr)2=kr2m    n22m2r2=kr2m    r4=n22mk    r2=nmk.

ConclusionCorrect ✅.


Option (B): v2=nkm3

From r2=nmk, substitute into v2=kr2m:

v2=kmnmk=nkmmk=nkm3.

ConclusionCorrect ✅.


Option (C): Lmr2=km

From L=n and r2=nmk:

Lmr2=nmnmk=mkm=km.

ConclusionCorrect ✅.


Option (D): E=n2km

Total energy E=KE+PE:

E=12mv2+12kr2.

From mv2=kr2 (see Equation 1):

E=12kr2+12kr2=kr2.

Substitute r2=nmk:

E=knmk=nkm.

The given option n2km is half the correct value.
ConclusionIncorrect ❌.


Final Answer

Correct Options(A)(B)(C)

A,B,C

Note: This problem illustrates how Bohr’s quantization elegantly adapts to non-Coulomb forces, revealing universal principles in quantum systems.

Comments