A projectile is fired from horizontal ground with speed 𝑣 and projection angle 𝜃. When the acceleration due to gravity is 𝑔, the range of the projectile is 𝑑. If at the highest point in its trajectory, the projectile enters a different region where the effective acceleration due to gravity is 𝑔� = � �.�� , then the new range is 𝑑� = 𝑛𝑑. The value of n is _____.

 We are given a projectile fired from horizontal ground with speed 

v and projection angle θ. The range of the projectile under gravity g is d. At the highest point of its trajectory, the projectile enters a region where the effective acceleration due to gravity changes to g=g1.25. We are to find the factor n such that the new range d=nd.


Step 1: Range of the projectile under gravity g

The range d of a projectile under gravity g is given by:

d=v2sin(2θ)g.

Step 2: Time of flight under gravity g

The time of flight T of the projectile under gravity g is:

T=2vsinθg.

Step 3: Time to reach the highest point

The time t1 to reach the highest point is half the total time of flight:

t1=T2=vsinθg.

Step 4: Horizontal distance covered before the highest point

The horizontal distance d1 covered before the highest point is:

d1=vcosθt1=vcosθvsinθg=v2sinθcosθg.

Step 5: Time of flight after the highest point

After the highest point, the projectile enters a region with gravity g=g1.25. The time t2 to fall from the highest point to the ground under gravity g is:

t2=2hg,

where h is the maximum height of the projectile. The maximum height h is:

h=v2sin2θ2g.

Substitute h and g=g1.25 into t2:


Step 6: Horizontal distance covered after the highest point

The horizontal distance d2 covered after the highest point is:

d2=vcosθt2=vcosθ1.25vsinθg=1.25v2sinθcosθg.

Step 7: Total new range d

The total new range d is the sum of d1 and d2:

d=d1+d2=v2sinθcosθg+1.25v2sinθcosθg.

Factor out v2sinθcosθg:

d=v2sinθcosθg(1+1.25).

Step 8: Compare with the original range d

The original range d is:

d=v2sin(2θ)g=2v2sinθcosθg.

Thus, the ratio dd is:

Simplify 1.25:

1.25=54=52.

Substitute into the ratio:

dd=1+522=2+54.

Step 9: Value of n

The value of n is:

n=2+54.

Final Answer:

The value of n is:

n=2+54.

Comments