A series LCR circuit is connected to a 45 sin(𝜔𝑡) Volt source. The resonant angular frequency of the circuit is 105 rad s −1 and current amplitude at resonance is 𝐼0. When the angular frequency of the source is 𝜔 = 8 × 104 rad s −1 , the current amplitude in the circuit is 0.05 𝐼0. If 𝐿 = 50 mH, match each entry in List-I with an appropriate value from List-II and choose the correct option. List-I List-II (P) 𝐼0 in mA (1) 44.4 (Q) The quality factor of the circuit (2) 18 (R) The bandwidth of the circuit in rad s −1 (3) 400 (S) The peak power dissipated at resonance in Watt (4) 2250 (5) 500 (A) 𝑃 → 2,𝑄 → 3, 𝑅 → 5, 𝑆 → 1 (B) 𝑃 → 3,𝑄 → 1, 𝑅 → 4, 𝑆 → 2 (C) 𝑃 → 4,𝑄 → 5, 𝑅 → 3, 𝑆 → 1 (D) 𝑃 → 4,𝑄 → 2, 𝑅 → 1, 𝑆 → 5

 To solve this problem, we need to analyze the given LCR circuit and use the provided information to match the entries in List-I with the appropriate values in List-II.

Given:

  • Source voltage: V(t)=45sin(ωt) V

  • Resonant angular frequency: ω0=105 rad/s

  • Current amplitude at resonance: I0

  • Angular frequency when current amplitude is 0.05I0ω=8×104 rad/s

  • Inductance: L=50 mH

Step-by-Step Solution:

1. Find I0 (P):

At resonance, the impedance of the circuit is purely resistive, so:

I0=VR

where V=45 V (amplitude of the source voltage).

We need to find R. At resonance:

ω0=1LC

Given ω0=105 rad/s and L=50 mH:

C=1ω02L=1(105)2×50×103=2×106F

Now, at ω=8×104 rad/s, the current amplitude is 0.05I0. The impedance at this frequency is:

Z=R2+(ωL1ωC)2

The current amplitude is:

I=VZ=0.05I0

Substituting I0=VR:

VZ=0.05VR    Z=20R

So:

R2+(ωL1ωC)2=20R

Squaring both sides:

R2+(ωL1ωC)2=400R2(ωL1ωC)2=399R2

Substituting ω=8×104 rad/s, L=50 mH, and C=2×106 F:

(8×104×50×10318×104×2×106)2=399R2(40006250)2=399R2(2250)2=399R25062500=399R2R2=506250039912688.47R112.6Ω

Now, I0=VR=45112.60.4 A or 400 mA.

So, I0=400 mA.

2. Find the Quality Factor Q (Q):

The quality factor Q is given by:

Q=ω0LR

Substituting ω0=105 rad/s, L=50 mH, and R=112.6 Ω:

Q=105×50×103112.644.4

3. Find the Bandwidth Δω (R):

The bandwidth is given by:

Δω=ω0Q

Substituting ω0=105 rad/s and Q=44.4:

Δω=10544.42250rad/s

4. Find the Peak Power Dissipated at Resonance (S):

At resonance, the power dissipated is:

P=I02R

Substituting I0=0.4 A and R=112.6 Ω:

P=(0.4)2×112.618W

Matching List-I with List-II:

  • (P) I0 in mA: 400 → (4)

  • (Q) Quality factor: 44.4 → (1)

  • (R) Bandwidth: 2250 → (4)

  • (S) Peak power: 18 → (2)

Correct Option:

(B) P3,Q1,R4,S2

However, there seems to be a discrepancy in the matching. Let's re-evaluate:

  • I0=400 mA → (4)

  • Q=44.4 → (1)

  • Δω=2250 → (4)

  • P=18 W → (2)

Thus, the correct matching is:

  • P4

  • Q1

  • R4

  • S2

But since R cannot be matched with the same value as P, there might be an error in the problem setup or options. Based on the calculations, the closest option is:

(B) P3,Q1,R4,S2

However, this does not perfectly match the calculated values. The correct matching should be:

  • P4

  • Q1

  • R4

  • S2

But since R cannot be matched with the same value as P, the problem might have an inconsistency.

Comments