A solid sphere of mass 1 kg and radius 1 m rolls without slipping on a fixed inclined plane with an angle of inclination 𝜃 = 30° from the horizontal. Two forces of magnitude 1 N each, parallel to the incline, act on the sphere, both at distance 𝑟 = 0.5 m from the center of the sphere, as shown in the figure. The acceleration of the sphere down the plane is ____ 𝑚𝑠��. (Take 𝑔 = 10 𝑚 𝑠��.)

 We are given a solid sphere of mass 

m=1kg and radius R=1m rolling without slipping on a fixed inclined plane with an angle of inclination θ=30. Two forces of magnitude F=1N each, parallel to the incline, act on the sphere at a distance r=0.5m from the center of the sphere. We are to find the acceleration of the sphere down the plane.


Step 1: Free-body diagram and forces

The forces acting on the sphere are:

  1. Gravitational forcemgsinθ acting down the incline.

  2. Normal forceN=mgcosθ acting perpendicular to the incline.

  3. Frictional forcef acting up the incline (providing the torque for rolling without slipping).

  4. Two applied forces: Each of magnitude F=1N, acting parallel to the incline at a distance r=0.5m from the center.


Step 2: Net force along the incline

The net force along the incline is:

Fnet=mgsinθ+2Ff.

Substitute m=1kgg=10m/s2θ=30, and F=1N:

Fnet=(1)(10)(sin30)+2(1)f=5+2f=7f.

Step 3: Torque and rotational motion

The sphere rolls without slipping, so the linear acceleration a and angular acceleration α are related by:

a=Rα.

The torque τ about the center of the sphere is due to the frictional force f and the two applied forces F:

τ=fR2Fr.

For a solid sphere, the moment of inertia I is:

I=25mR2.

Using τ=Iα, we get:

fR2Fr=(25mR2)α.

Substitute α=aRm=1kgR=1mF=1N, and r=0.5m:

f(1)2(1)(0.5)=(25(1)(1)2)(a1),f1=25a.

Solve for f:

f=25a+1.

Step 4: Solve for acceleration

From Step 2, the net force is:

Fnet=7f.

Substitute f=25a+1:

Fnet=7(25a+1)=625a.

Using Newton's second law Fnet=ma:

625a=(1)a,6=a+25a,6=75a.

Solve for a:

a=657=307m/s2.

Final Answer:

The acceleration of the sphere down the plane is:

a=307m/s2.

Comments