An annular disk of mass 𝑀, inner radius 𝑎 and outer radius 𝑏 is placed on a horizontal surface with coefficient of friction 𝜇, as shown in the figure. At some time, an impulse ℐ0𝑥̂ is applied at a height ℎ above the center of the disk. If ℎ = ℎ𝑚 then the disk rolls without slipping along the 𝑥-axis. Which of the following statement(s) is(are) correct? (A) For 𝜇 ≠ 0 and 𝑎 → 0, ℎ𝑚 = 𝑏/2. (B) For 𝜇 ≠ 0 and 𝑎 → 𝑏, ℎ𝑚 = 𝑏. (C) For ℎ = ℎ𝑚, the initial angular velocity does not depend on the inner radius 𝑎. (D) For 𝜇 = 0 and ℎ = 0, the wheel always slides without rolling.

 To analyze the problem, let's break it down step by step.

Given:

  • Annular disk with mass M, inner radius a, and outer radius b.

  • The disk is placed on a horizontal surface with a coefficient of friction μ.

  • An impulse I0x^ is applied at a height h above the center of the disk.

  • If h=hm, the disk rolls without slipping along the x-axis.

Key Concepts:

  1. Rolling without slipping: This condition requires that the linear velocity v of the center of mass and the angular velocity ω satisfy v=ωR, where R is the effective radius.

  2. Impulse and angular momentum: The impulse I0 imparts both linear momentum I0=Mv and angular momentum I0h=Iω, where I is the moment of inertia of the disk.

  3. Moment of inertia for an annular disk: The moment of inertia about the center is I=12M(a2+b2).

Analysis:

  1. Condition for rolling without slipping:

    • Linear momentum: I0=Mv.

    • Angular momentum: I0h=Iω.

    • Rolling condition: v=ωb (since the outer radius b is the effective radius for rolling).

    Substituting v=ωb into the angular momentum equation:

    I0h=Iω=I(vb)=I(I0Mb).

    Solving for h:

    h=IMb.

    Substituting I=12M(a2+b2):

    hm=12M(a2+b2)Mb=a2+b22b.
  2. Evaluate the statements:

    • (A) For μ0 and a0hm=b2:

      • If a0hm=0+b22b=b2. This is correct.

    • (B) For μ0 and abhm=b:

      • If abhm=b2+b22b=b. This is correct.

    • (C) For h=hm, the initial angular velocity does not depend on the inner radius a:

      • The angular velocity ω=vb=I0Mb does not depend on a. This is correct.

    • (D) For μ=0 and h=0, the wheel always slides without rolling:

      • If μ=0, there is no friction to provide the torque needed for rolling. If h=0, the impulse is applied at the center, so no torque is generated. The disk will slide without rolling. This is correct.

Final Answer:

All statements (A), (B), (C), and (D) are correct.

Comments