An infinitely long wire, located on the z-axis, carries a current I along the +z-direction and produces the magnetic field B . The magnitude of the line integral ∫ B ⋅.dl ⃗⃗ along a straight line from the point (−√3a, a, 0) to (a, a, 0) is given by [u0 is the magnetic permeability of free space.]

 To determine the magnitude of the line integral 

Bdl along the straight path from (3a,a,0) to (a,a,0) due to an infinite wire on the z-axis carrying current I, we proceed as follows:

Key Steps:

  1. Magnetic Field of the Wire:

    • The magnetic field at a distance r from the wire is given by Ampère's Law:

      B=μ0I2πr,

      where r=x2+y2. For the path y=ar=x2+a2.

  2. Direction of B:

    • The field circulates counterclockwise (right-hand rule). At a point (x,a), the tangential direction of B is (a,x), normalized by r2.

  3. Line Integral Setup:

    • The path is horizontal (dl=dxi^) at y=a. The dot product Bdl simplifies to:

      Bdl=(μ0I2π(x2+a2))(a)dx.
  4. Integration:

    • Integrate from x=3a to x=a:

      Bdl=μ0Ia2π3aadxx2+a2.
    • Using dxx2+a2=1atan1(xa):

      Result=μ0I2π[tan1(1)tan1(3)].
    • Evaluate arctangents: tan1(1)=π4 and tan1(3)=π3.

      Result=μ0I2π[π4+π3]=μ0I2π7π12=7μ0I24.
  5. Magnitude:

    • The magnitude of the integral is 7μ0I24.

Final Answer:

7μ0I24

Correct Option(A)

Comments