In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is 10 ± 0.1 cm and the distance of its real image from the lens is 20 ± 0.2 cm. The error in the determination of focal length of the lens is 𝑛 %. The value of 𝑛 is _______.

 To determine the error in the focal length of a thin convex lens, we'll use the lens formula and error propagation techniques.

Given:

  • Object distance, u=10±0.1 cm

  • Image distance, v=20±0.2 cm

Lens Formula:

1f=1v+1u

where f is the focal length.

Step 1: Calculate the focal length f

1f=120+110=120+220=320f=2036.6667 cm

Step 2: Determine the relative errors

  • Relative error in uΔuu=0.110=0.01 (1%)

  • Relative error in vΔvv=0.220=0.01 (1%)

Step 3: Apply error propagation
The relative error in f can be approximated by:

Δff(Δuu)2+(Δvv)2Δff(0.01)2+(0.01)2=0.0001+0.0001=0.00020.01414Δff1.414%

Step 4: Calculate the absolute error in f

Δf=f×Δff6.6667×0.014140.0943 cm

Step 5: Determine the percentage error n%

n=Δff×1001.414%

Rounding to the nearest whole number, n1%.

However, considering the significant figures and the nature of the problem, the closest value to 1.414% is 1%.

Final Answer:

1

Comments