0
SUBTOTAL :
In a particular system of units, a physical quantity can be expressed in terms of the electric charge  ๏ฟฝ ๏ฟฝ, electron mass ๐‘š๏ฟฝ, Planckโ€™s constant โ„Ž, and Coulombโ€™s constant ๐‘˜ = ๏ฟฝ  , where ๐œ–๏ฟฝ is the  permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is  [๐ต] = [๐‘’]๏ฟฝ[๐‘š๏ฟฝ]๏ฟฝ[โ„Ž]๏ฟฝ[๐‘˜]๏ฟฝ. The value of ๐›ผ + ๐›ฝ + ๐›พ +๐›ฟ is ____ .

In a particular system of units, a physical quantity can be expressed in terms of the electric charge � �, electron mass ๐‘š�, Planck’s constant โ„Ž, and Coulomb’s constant ๐‘˜ = � , where ๐œ–� is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is [๐ต] = [๐‘’]�[๐‘š�]�[โ„Ž]�[๐‘˜]�. The value of ๐›ผ + ๐›ฝ + ๐›พ +๐›ฟ is ____ .

Size
Price:

Read more



Alright, let's tackle this problem step by step. We need to determine the exponents ฮฑฮฒฮณ, and ฮด such that the dimensions of the magnetic field B can be expressed as:

[B]=[e]ฮฑ[me]ฮฒ[h]ฮณ[k]ฮด

And then find the sum ฮฑ+ฮฒ+ฮณ+ฮด.

Understanding the Dimensions

First, let's recall the dimensions of each of the given physical constants in terms of mass (M), length (L), time (T), and electric charge (Q):

  1. Electric charge (e):

    • [e]=Q

  2. Electron mass (m_e):

    • [me]=M

  3. Planck’s constant (h):

    • Planck’s constant has units of action, which is energy × time.

    • Energy has dimensions ML2T2, so:

      • [h]=ML2T1

  4. Coulomb’s constant (k):

    • Coulomb's constant is given by k=14ฯ€ฯต0.

    • The force between two charges is F=ke2r2, so:

      • [F]=MLT2=[k]Q2L2

      • Therefore, [k]=MLT2L2/Q2=ML3T2Q2

  5. Magnetic field (B):

    • The force on a moving charge in a magnetic field is F=qvB, so:

      • [F]=MLT2=QLT1[B]

      • Therefore, [B]=MLT2/(QLT1)=MT1Q1

So, the dimension of the magnetic field is:

[B]=MT1Q1

Setting Up the Dimensional Equation

Now, express [B] in terms of the other constants:

[B]=[e]ฮฑ[me]ฮฒ[h]ฮณ[k]ฮด

Substituting the dimensions:

MT1Q1=QฮฑMฮฒ(ML2T1)ฮณ(ML3T2Q2)ฮด

Let's expand the right-hand side:

=QฮฑMฮฒMฮณL2ฮณTฮณMฮดL3ฮดT2ฮดQ2ฮด

Combine like terms:

  • For Mฮฒ+ฮณ+ฮด

  • For L2ฮณ+3ฮด

  • For Tฮณ2ฮด

  • For Qฮฑ2ฮด

So, we have:

MT1Q1=Mฮฒ+ฮณ+ฮดL2ฮณ+3ฮดTฮณ2ฮดQฮฑ2ฮด

Equating the Dimensions

Now, equate the exponents for each fundamental dimension on both sides:

  1. Mass (M):

    • 1=ฮฒ+ฮณ+ฮด

  2. Length (L):

    • 0=2ฮณ+3ฮด (since there's no length on the left)

  3. Time (T):

    • 1=ฮณ2ฮด

  4. Charge (Q):

    • 1=ฮฑ2ฮด

Now, we have a system of four equations:

  1. ฮฒ+ฮณ+ฮด=1

  2. 2ฮณ+3ฮด=0

  3. ฮณ+2ฮด=1

  4. ฮฑ2ฮด=1

Solving the System of Equations

Let's solve these equations step by step.

From equation 2:

2ฮณ+3ฮด=02ฮณ=3ฮดฮณ=32ฮด

From equation 3:

ฮณ+2ฮด=1

Substitute ฮณ from above:

32ฮด+2ฮด=1(32+2)ฮด=1(12)ฮด=1ฮด=2

Now, find ฮณ:

ฮณ=32×2=3

Now, from equation 1:

ฮฒ+ฮณ+ฮด=1ฮฒ3+2=1ฮฒ1=1ฮฒ=2

Finally, from equation 4:

ฮฑ2ฮด=1ฮฑ4=1ฮฑ=3

Verifying the Solution

Let's check if these values satisfy all equations:

  1. ฮฒ+ฮณ+ฮด=2+(3)+2=1 ✅

  2. 2ฮณ+3ฮด=2(3)+3(2)=6+6=0 ✅

  3. ฮณ+2ฮด=3+4=1 ✅

  4. ฮฑ2ฮด=34=1 ✅

All equations are satisfied.

Calculating the Sum

Now, compute ฮฑ+ฮฒ+ฮณ+ฮด:

ฮฑ+ฮฒ+ฮณ+ฮด=3+2+(3)+2=4

Final Answer

The value of ฮฑ+ฮฒ+ฮณ+ฮด is 4.


 

0 Reviews

Contact form

Name

Email *

Message *