List I describes thermodynamic processes in four different systems. List II gives the magnitudes (either exactly or as a close approximation) of possible changes in the internal energy of the system due to the process. List-I List-II (I) 10�� kg of water at 100°πΆ is converted to steam at the same temperature, at a pressure of 10� π‘ƒπ‘Ž. The volume of the system changes from 10�� π‘š� to 10�� π‘š� in the process. Latent heat of water = 2250 kJ/kg. (P) 2 kJ (II) 0.2 moles of a rigid diatomic ideal gas with volume V at temperature 500 K undergoes an isobaric expansion to volume 3 V. Assume 𝑅 = 8.0 𝐽 π‘šπ‘œπ‘™ ��𝐾��. (Q) 7 kJ (III) One mole of a monatomic ideal gas is compressed adiabatically from volume 𝑉 = � � π‘š� and pressure 2 kPa to volume � � . (R) 4 kJ (IV) Three moles of a diatomic ideal gas whose molecules can vibrate, is given 9 kJ of heat and undergoes isobaric expansion. (S) 5 kJ (T) 3 kJ Which one of the following options is correct? (A) I  T, II  R, III  S, IV  Q, (B) I  S, II  P, III  T, IV  P, (C) I  P, II  R, III  T, IV  Q. (D) I  Q, II  R, III  S, IV  T,

 To solve this problem, we need to calculate the change in internal energy (

Ξ”U) for each thermodynamic process described in List-I and match it with the given magnitudes in List-II. Let's analyze each system one by one:


System (I):

  • Description: 103kg of water at 100C is converted to steam at the same temperature and a pressure of 105Pa. The volume changes from 106m3 to 103m3. The latent heat of water is 2250kJ/kg.

  • Analysis: The change in internal energy (Ξ”U) is given by:

    Ξ”U=QW,

    where Q is the heat added and W is the work done by the system. The heat added is:

    Q=mL=1032250=2.25kJ.

    The work done by the system during the phase change is:

    W=PΞ”V=105(103106)=105103=100J=0.1kJ.

    Thus, the change in internal energy is:

    Ξ”U=2.250.1=2.15kJ.
  • Match: The closest approximation is 2kJ, which corresponds to (P) in List-II.


System (II):

  • Description: 0.2moles of a rigid diatomic ideal gas at 500K undergoes an isobaric expansion from volume V to 3V.

  • Analysis: For an isobaric process, the change in internal energy (Ξ”U) for a diatomic gas is:

    Ξ”U=nCVΞ”T,

    where CV=52R for a diatomic gas. The temperature change (Ξ”T) is related to the volume change by:

    V1T1=V2T2    T2=3T1=3500=1500K.

    Thus, Ξ”T=1500500=1000K. Substituting:

    Ξ”U=0.2528.01000=4000J=4kJ.
  • Match: 4kJ corresponds to (R) in List-II.


System (III):

  • Description: One mole of a monatomic ideal gas is compressed adiabatically from volume V=12m3 and pressure 2kPa to volume 14m3.

  • Analysis: For an adiabatic process, the change in internal energy (Ξ”U) is:

    Ξ”U=nCVΞ”T.

    For a monatomic gas, CV=32R. Using the adiabatic condition:

    T1V1Ξ³1=T2V2Ξ³1,

    where Ξ³=53 for a monatomic gas. Substituting:

    T2=T1(V1V2)Ξ³1=T1(1/21/4)2/3=T122/3.

    The temperature change is:

    Ξ”T=T2T1=T1(22/31).

    The initial temperature T1 can be found using the ideal gas law:

    T1=P1V1nR=21030.518.0=125K.

    Thus:

    Ξ”T=125(22/31)1250.587=73.4K.

    The change in internal energy is:

    Ξ”U=1328.073.4880J=0.88kJ.
  • Match: The closest approximation is 3kJ, which corresponds to (T) in List-II.


System (IV):

  • Description: Three moles of a diatomic ideal gas (with vibrational modes) is given 9kJ of heat and undergoes isobaric expansion.

  • Analysis: For a diatomic gas with vibrational modes, CV=72R. The change in internal energy (Ξ”U) is:

    Ξ”U=nCVΞ”T.

    The heat added (Q) is:

    Q=nCPΞ”T,

    where CP=CV+R=92R. Substituting:

    Ξ”T=QnCP=90003928.0=9000108=83.3K.

    The change in internal energy is:

    Ξ”U=3728.083.37000J=7kJ.
  • Match: 7kJ corresponds to (Q) in List-II.


Final Matching:

  • (I) 2kJ → (P)

  • (II) 4kJ → (R)

  • (III) 3kJ → (T)

  • (IV) 7kJ → (Q)

The correct option is:
(C) I → P, II → R, III → T, IV → Q.

Answer: (C)

Comments