The electric field associated with an electromagnetic wave propagating in a dielectric medium is given by 𝐸⃗ = 30(2π‘₯̂ + 𝑦̂)sin [2πœ‹ (5 × 10 14𝑑 − 107 3 𝑧)] V m−1 . Which of the following option(s) is(are) correct? [Given: The speed of light in vacuum, 𝑐 = 3 × 108 m s −1 ] (A) 𝐡π‘₯ = −2 × 10 −7 sin [2πœ‹ (5 × 10 14 𝑑 − 107 3 𝑧)] Wb m−2 . (B) 𝐡𝑦 = 2 × 10 −7 sin [2πœ‹ (5 × 10 14 𝑑 − 107 3 𝑧)] Wb m−2 . (C) The wave is polarized in the π‘₯𝑦-plane with polarization angle 30° with respect to the π‘₯-axis. (D) The refractive index of the medium is 2.

To determine which of the given options are correct, we need to analyze the provided electric field and use the relationships between the electric field, magnetic field, and the properties of the electromagnetic wave in a dielectric medium.

Given:

  • Electric field:

    E=30(2x^+y^)sin[2Ο€(5×1014t1073z)]V/m
  • Speed of light in vacuum: c=3×108m/s

Step 1: Determine the wave vector and angular frequency

The general form of the electric field for a plane wave is:

E=E0sin(krωt)

Comparing with the given electric field:

Ο‰=2Ο€×5×1014rad/sk=2Ο€×1073m1

Step 2: Determine the magnetic field

The magnetic field B is related to the electric field E by:

B=1c(k^×E)

Here, k^ is the unit vector in the direction of propagation, which is the z-direction. Thus:

k^=z^

The electric field components are:

Ex=60sin[2Ο€(5×1014t1073z)]Ey=30sin[2Ο€(5×1014t1073z)]

Using the cross product:

B=1c(z^×E)=1c(Eyx^+Exy^)

Substituting the values:

Bx=Eyc=303×108sin[2Ο€(5×1014t1073z)]=107sin[2Ο€(5×1014t1073z)]By=Exc=603×108sin[2Ο€(5×1014t1073z)]=2×107sin[2Ο€(5×1014t1073z)]

Step 3: Check the options

  • Option (A):

    Bx=2×107sin[2Ο€(5×1014t1073z)]

    This is incorrect because our calculation shows Bx=107sin().

  • Option (B):

    By=2×107sin[2Ο€(5×1014t1073z)]

    This is correct as it matches our calculation.

  • Option (C): The wave is polarized in the xy-plane with a polarization angle of 30 with respect to the x-axis.
    The electric field components are Ex=60 and Ey=30, so the polarization angle ΞΈ is:

    ΞΈ=tan1(EyEx)=tan1(3060)=tan1(12)26.565

    This is not exactly 30, so this option is incorrect.

  • Option (D): The refractive index of the medium is 2.
    The refractive index n is given by:

    n=cv

    where v is the phase velocity of the wave in the medium. The phase velocity v is:

    v=Ο‰k=2Ο€×5×10142Ο€×1073=5×10141073=1.5×108m/s

    Thus:

    n=cv=3×1081.5×108=2

    This option is correct.

Final Answer:

The correct options are (B) and (D).

Comments