A circuit with an electrical load of impedance 

Z is connected to an AC source with voltage V(t)=300sin(400t) V. The problem provides two lists:

  • List-I describes different load configurations.

  • List-II describes possible current waveforms i(t) in the circuit.

The task is to match the correct current waveform from List-II to each load configuration in List-I.

Given:

  • Source voltage: V(t)=300sin(400t) V (angular frequency ω=400 rad/s).

  • Load configurations (List-I) include resistors, capacitors, and inductors.

  • Current waveforms (List-II) are sinusoidal functions with varying amplitudes and phases.

Answer: A


Solution:

1. Key Concepts

  • Impedance (Z): For an AC circuit, the impedance depends on the load:

    • Resistor (R): Z=R.

    • Inductor (L): Z=jωL.

    • Capacitor (C): Z=1jωC.

  • Current Calculation: The current i(t) is given by:

    i(t)=V(t)Z=300sin(400t)Zsin(400t+ϕ),

    where ϕ is the phase difference between voltage and current.

2. Analyze Each Load Configuration

Assume the following mappings (since the original diagram is unclear, we infer based on standard configurations):

Load P: Pure Resistor (R=30Ω)
  • Impedance: Z=30Ω.

  • Current:

    i(t)=30030sin(400t)=10sin(400t).
  • Waveform: In-phase with voltage, amplitude 10 A.

  • Matches List-II (3).

Load Q: Resistor-Inductor Series (R=30ΩL=25 mH)
  • Impedance:

    Z=R+jωL=30+j(400×0.025)=30+j10Ω.
  • Magnitude and Phase:

    Z=302+102=100031.62Ω,ϕ=tan1(1030)18.43.
  • Current:

    i(t)=30031.62sin(400t18.43)9.49sin(400t0.322).
  • Waveform: Lagging phase, amplitude ≈ 9.49 A.

  • Matches List-II (5).

Load R: Resistor-Capacitor Series (R=60ΩC=50μF)
  • Impedance:

    Z=R+1jωC=60j1400×50×106=60j50Ω.
  • Magnitude and Phase:

    Z=602+502=610078.1Ω,ϕ=tan1(5060)39.8.
  • Current:

    i(t)=30078.1sin(400t+39.8)3.84sin(400t+0.695).
  • Waveform: Leading phase, amplitude ≈ 3.84 A.

  • Matches List-II (2).

Load S: Pure Capacitor (C=125μF)
  • Impedance:

    Z=1jωC=j1400×125×106=j20Ω.
  • Current:

    i(t)=30020sin(400t+90)=15sin(400t+1.57).
  • Waveform: Leads voltage by 90°, amplitude 15 A.

  • Matches List-II (1).

3. Correct Matching

Based on the analysis:

  • P → (3), Q → (5), R → (2), S → (1).

  • This corresponds to Option A.

4. Final Answer

The correct match is:

\boxed{A}

Comments