A closed vessel contains 10 g of an ideal gas X at 300 K, which exerts 2 atm pressure. At the same temperature, 80 g of another ideal gas Y is added to it and the pressure becomes 6 atm. The ratio of root mean square velocities of X and Y at 300 K is

 

To find the ratio of the root mean square (rms) velocities of gas X and gas Y at 300 K, we'll follow these steps:

Step 1: Understand the given data

  • Gas X:

    • Mass (mX) = 10 g

    • Pressure (PX) = 2 atm

    • Temperature (T) = 300 K

  • Gas Y:

    • Mass (mY) = 80 g

    • When added to the vessel, the total pressure becomes 6 atm.

Step 2: Determine the molar masses

Let the molar masses of X and Y be MX and MY, respectively.

For Gas X:

Using the ideal gas law:

PXV=nXRT

where nX=mXMX=10MX.

So,

2V=(10MX)R×300V=10×R×3002MX=1500RMX

For Gas X and Y together:

Total pressure Ptotal=6 atm.

Total moles:

ntotal=nX+nY=10MX+80MY

Using the ideal gas law again:

6V=(10MX+80MY)R×300

Substitute V from the first equation:

6(1500RMX)=(10MX+80MY)R×300

Simplify:

9000RMX=(10MX+80MY)300R9000MX=3000MX+24000MY6000MX=24000MYMYMX=240006000=4MY=4MX

Step 3: Calculate the rms velocities

The root mean square velocity is given by:

vrms=3RTM

The ratio of the rms velocities of X and Y is:

vrms,Xvrms,Y=MYMX=4=2

Final Answer:

2

Comments