Math JEE Adv. 2025 paper 1


 Let's analyze the problem step-by-step to verify each statement.


Step 1: Find the Direction Vector of L1

The line L1 is the intersection of the planes:

2x+3y+z=4andx+2y+z=5.

To find its direction vector, compute the cross product of the normal vectors of the two planes:

n1=(2,3,1),n2=(1,2,1).d=n1×n2=ijk231121=(3112)i(2111)j+(2231)k=(1,1,1).

Thus, the direction vector of L1 is d=(1,1,1).


Step 2: Parametric Equation of L2

The line L2 passes through P(2,1,3) and is parallel to L1, so its parametric equations are:

L2:r=(2,1,3)+t(1,1,1).

Step 3: Find the Intersection Point Q of L2 with Plane M

The plane M is given by:

2x+y2z=6.

Substitute the parametric equations of L2 into M:

2(2+t)+(1t)2(3+t)=6.

Simplify:

4+2t1t62t=6    3t=6    t=9.

Thus, the coordinates of Q are:

Q=(2+(9),1(9),3+(9))=(7,8,6).

Step 4: Find the Foot of the Perpendicular R from P to M

The normal vector of M is n=(2,1,2). The parametric equations of the line through P perpendicular to M are:

r=(2,1,3)+s(2,1,2).

Substitute into M:

2(2+2s)+(1+s)2(32s)=6.

Simplify:

4+4s1+s6+4s=6    3+9s=6    s=1.

Thus, the coordinates of R are:

R=(2+2(1),1+1(1),32(1))=(4,0,1).

Step 5: Verify the Statements

(A) Length of PQ

PQ=(72)2+(8(1))2+(63)2=(9)2+92+(9)2=81+81+81=243=93.

This is true.

(B) Length of QR

QR=(4(7))2+(08)2+(1(6))2=112+(8)2+72=121+64+49=234.

This is false (not 15).

(C) Area of PQR

Compute the vectors PQ and PR:

PQ=(9,9,9),PR=(2,1,2).

The cross product is:

PQ×PR=ijk999212=(9,36,27).

The magnitude is:

PQ×PR=(9)2+(36)2+(27)2=81+1296+729=2106=3234.

The area of PQR is:

12PQ×PR=32234.

This is true.

(D) Angle Between PQ and PR

The dot product is:

PQPR=(9)(2)+(9)(1)+(9)(2)=18+9+18=9.

The magnitudes are:

PQ=93,PR=22+12+(2)2=3.

The cosine of the angle θ is:

cosθ=9933=133.

The acute angle is cos1(133), not cos1(123).
This is false.


Final Answer

The true statements are (A) and (C).

Answer: A,C

Comments