Let's analyze the problem step-by-step to verify each statement.
Step 1: Find the Direction Vector of L1
The line L1 is the intersection of the planes:
2x+3y+z=4andx+2y+z=5.To find its direction vector, compute the cross product of the normal vectors of the two planes:
n1=(2,3,1),n2=(1,2,1).d=n1×n2=i21j32k11=(3⋅1−1⋅2)i−(2⋅1−1⋅1)j+(2⋅2−3⋅1)k=(1,−1,1).Thus, the direction vector of L1 is d=(1,−1,1).
Step 2: Parametric Equation of L2
The line L2 passes through P(2,−1,3) and is parallel to L1, so its parametric equations are:
L2:r=(2,−1,3)+t(1,−1,1).
Step 3: Find the Intersection Point Q of L2 with Plane M
The plane M is given by:
2x+y−2z=6.Substitute the parametric equations of L2 into M:
2(2+t)+(−1−t)−2(3+t)=6.Simplify:
4+2t−1−t−6−2t=6⟹−3−t=6⟹t=−9.Thus, the coordinates of Q are:
Q=(2+(−9),−1−(−9),3+(−9))=(−7,8,−6).
Step 4: Find the Foot of the Perpendicular R from P to M
The normal vector of M is n=(2,1,−2). The parametric equations of the line through P perpendicular to M are:
r=(2,−1,3)+s(2,1,−2).Substitute into M:
2(2+2s)+(−1+s)−2(3−2s)=6.Simplify:
4+4s−1+s−6+4s=6⟹−3+9s=6⟹s=1.Thus, the coordinates of R are:
R=(2+2(1),−1+1(1),3−2(1))=(4,0,1).
Step 5: Verify the Statements
(A) Length of PQ
PQ=(−7−2)2+(8−(−1))2+(−6−3)2=(−9)2+92+(−9)2=81+81+81=243=93.This is true.
(B) Length of QR
QR=(4−(−7))2+(0−8)2+(1−(−6))2=112+(−8)2+72=121+64+49=234.This is false (not 15).
(C) Area of △PQR
Compute the vectors PQ and PR:
PQ=(−9,9,−9),PR=(2,1,−2).The cross product is:
PQ×PR=i−92j91k−9−2=(−9,−36,−27).The magnitude is:
∣PQ×PR∣=(−9)2+(−36)2+(−27)2=81+1296+729=2106=3234.The area of △PQR is:
21∣PQ×PR∣=23234.This is true.
(D) Angle Between PQ and PR
The dot product is:
PQ⋅PR=(−9)(2)+(9)(1)+(−9)(−2)=−18+9+18=9.The magnitudes are:
∣PQ∣=93,∣PR∣=22+12+(−2)2=3.The cosine of the angle θ is:
cosθ=93⋅39=331.The acute angle is cos−1(331), not cos−1(231).
This is false.
Final Answer
The true statements are (A) and (C).
Answer: A,C
Comments
Post a Comment