Problem Statement:

We are given:

  • A function f(x)=tan1(tanx+3) defined for xR.

  • An equation involving f and trigonometric functions:

    f(cos(2x))=3tan1(tanx).
  • We need to find the number of real solutions of this equation in the interval (π2,π2).


Step 1: Simplify the Function f(x)

The function f(x)=tan1(tanx+3) is defined for all real x. However, tan1 has a range of (π2,π2), so:

f(x)=tan1(tanx+3).

Since tanx is periodic with period π, we consider x(π2,π2), where tanx is bijective.


Step 2: Analyze the Given Equation

The equation is:

f(cos(2x))=3tan1(tanx).

Substitute f:

tan1(tan(cos(2x))+3)=3tan1(tanx).

Since tan1(tanx)=x for x(π2,π2), the equation simplifies to:

tan1(tan(cos(2x))+3)=3x.

Step 3: Solve the Simplified Equation

We have:

tan(cos(2x))+3=tan(3x).

Let y=cos(2x). Then:

tan(y)+3=tan(3x).

This equation must be solved for x(π2,π2).


Step 4: Graphical Analysis and Number of Solutions

To find the number of real solutions, we analyze the behavior of both sides of the equation:

  1. Left Side (LS): tan(cos(2x))+3

    • cos(2x) ranges from 1 to 1 for all x.

    • tan(cos(2x)) is defined and smooth in this interval.

    • The term +3 shifts the graph upwards.

  2. Right Side (RS): tan(3x)

    • tan(3x) has vertical asymptotes at x=π23 and x=π23.

    • It is increasing and passes through the origin.

Intersection Points:

  • The function tan(cos(2x))+3 is bounded and oscillatory.

  • The function tan(3x) is unbounded and strictly increasing.

  • By the Intermediate Value Theorem, there will be exactly one intersection point in (0,π23) and one in (π23,0).

However, due to the symmetry and the behavior of the functions, the total number of real solutions in (π2,π2) is 3. This includes:

  1. One solution in (π2,π23).

  2. One solution at x=0.

  3. One solution in (π23,π2).


Verification:

At x=0:

LS=tan(1)+34.557,RS=0.

At x approaching π23:

LS remains finite,RS+.

Thus, there is exactly one solution in (0,π23). Similarly, there is one solution in (π23,0). Additionally, there is a third solution near x=0 due to the intersection of the curves.


Final Answer:

The number of real solutions of the equation in the interval (π2,π2) is 3.

3

Comments