Problem Statement:

We are given:

  • A parabola with equation y2=4ax where a>0.

  • A point P on this parabola.

  • The normal to the parabola at P meets the x-axis at point Q.

  • The area of triangle PFQ is 120, where F is the focus of the parabola.

  • The slope m of the normal and a are both positive integers.

  • We need to find the correct pair (a,m) from the given options.


Step 1: Understand the Parabola and Focus

The standard parabola y2=4ax has:

  • Vertex at (0,0).

  • Focus F at (a,0).


Step 2: Parametrize Point P on the Parabola

Let P be a point on the parabola. We can parametrize P as:

P=(at2,2at),

where t is a parameter.


Step 3: Find the Equation of the Normal at P

The slope of the tangent to the parabola y2=4ax at P is:

dydx=2ay=1t.

Thus, the slope of the normal (perpendicular to the tangent) is:

m=t.

The equation of the normal at P is:

y2at=t(xat2).


Step 4: Find Point Q where the Normal Meets the x-axis

At Qy=0. Substituting into the normal equation:

02at=t(xat2)    2at=tx+at3    x=at2+2a.

Thus, Q=(at2+2a,0).


Step 5: Compute the Area of Triangle PFQ

The vertices of the triangle are:

  • P=(at2,2at),

  • F=(a,0),

  • Q=(at2+2a,0).

Using the formula for the area of a triangle:

Area=12x1(y2y3)+x2(y3y1)+x3(y1y2).

Substituting the coordinates:

Area=12at2(00)+a(02at)+(at2+2a)(2at0)=122a2t+2a2t(t2+2).

Simplify:

Area=122a2t+2a2t3+4a2t=122a2t3+2a2t=a2t3+t.

Given that the area is 120:

a2t3+t=120.

Since a>0 and t>0 (as m=t is a positive integer), we have:

a2(t3+t)=120.


Step 6: Find Integer Solutions (a,t)

We are given that a and m=t are positive integers. Since m is positive, t must be negative, but from the problem's context, we consider t as a positive integer (as area is positive). Let's re-express m as m=t (assuming the slope is positive).

Now, solve:

a2(t3+t)=120.

Factorize 120:

120=23×3×5.

Test integer values of t:

  • For t=1:

    a2(1+1)=2a2=120    a2=60    aZ.
  • For t=2:

    a2(8+2)=10a2=120    a2=12    aZ.
  • For t=3:

    a2(27+3)=30a2=120    a2=4    a=2.

    This gives (a,m)=(2,3).

  • For t=4:

    a2(64+4)=68a2=120    a21.76    aZ.

Thus, the only valid integer solution is (a,m)=(2,3).


Step 7: Verify the Options

The options are:

  • (A) (2,3) – Matches our solution.

  • (B) (1,3) – Does not satisfy the area condition.

  • (C) (2,4) – Not valid.

  • (D) (1,4) – Not valid.


Final Answer:

The correct pair is (2,3), which corresponds to option (A).

A

Comments