Problem Statement:

We are given two functions:

  1. f:(0,1)R defined as:

    f(x)=nifx[1n+1,1n),nN.
  2. g:(0,1)R such that for all x(0,1):

    x2x1ttdt<g(x)<2x.

We are to evaluate the limit:

limx0f(x)g(x)

and determine which of the given options (A)-(D) is correct.


Step 1: Analyze f(x).

The function f(x) is piecewise constant:

  • For x[1n+1,1n)f(x)=n.

  • As x0+x falls into intervals with larger n.

Behavior as x0+:

  • For x[1n+1,1n)x1n.

  • Thus, f(x)=n1x.

Limit of f(x):

limx0+f(x)=limnn=.

Step 2: Analyze g(x).

The function g(x) is bounded by:

x2x1ttdt<g(x)<2x.

Lower Bound:

x2x1ttdt=x2x(1tt)dt.

Compute the integral:

(1tt)dt=2t23t3/2.

Evaluate from x2 to x:

[2x23x3/2][2x23x3]=2x23x3/22x+23x3.

For x0+, the dominant term is 2x, so:

x2x1ttdt2x.

Upper Bound:

g(x)<2x.

Conclusion for g(x):

g(x)2xasx0+.

Step 3: Evaluate limx0f(x)g(x).

From Step 1 and Step 2:

f(x)1x,g(x)2x.

Thus:

f(x)g(x)1x×2x=2.

Therefore:

limx0f(x)g(x)=2.

Verification of Bounds:

To ensure the approximation is valid, consider x[1n+1,1n):

  • For x1nf(x)=n.

  • The lower bound on g(x) is approximately 2x2n.

  • Thus:

    f(x)g(x)n×2n=2.

The upper bound g(x)<2x also leads to:

f(x)g(x)<n×2n=2.

Hence, the limit is squeezed to 2.


Final Answer:

The limit is equal to 2. Therefore, the correct option is (C).

C

Comments