Problem Statement:

We are given a piecewise function f:[0,1]R defined for n2 as:

f(x)={n(12nx)if 0x12n2n(2nx1)if 12nx34n4n(1nx)if 34nx1nnn1(nx1)if 1nx1

We need to find the maximum value of f(x) given that the area bounded by x=0x=1y=0, and y=f(x) is 4.


Step 1: Understand the Function f(x)

The function f(x) is defined in four intervals:

  1. First Interval (0x12n): Linear decrease from f(0)=n to f(12n)=0.

  2. Second Interval (12nx34n): Linear increase from f(12n)=0 to f(34n)=n.

  3. Third Interval (34nx1n): Linear decrease from f(34n)=n to f(1n)=0.

  4. Fourth Interval (1nx1): Linear increase from f(1n)=0 to f(1)=nn1(n1)=n.

Step 2: Compute the Bounded Area

The area A under f(x) from x=0 to x=1 is the sum of the areas in each interval:

  1. First Interval: Triangle with base 12n and height n.

    A1=12×12n×n=14
  2. Second Interval: Triangle with base 34n12n=14n and height n.

    A2=12×14n×n=18
  3. Third Interval: Triangle with base 1n34n=14n and height n.

    A3=12×14n×n=18
  4. Fourth Interval: Triangle with base 11n and height n.

    A4=12×(11n)×n=n12

Total Area:

A=A1+A2+A3+A4=14+18+18+n12=12+n12=n2

Given A=4:

n2=4    n=8

Step 3: Find the Maximum Value of f(x)

From the function definition, the maximum value occurs at x=34n and x=1:

f(34n)=nandf(1)=n

For n=8:

fmax=8

Final Answer:

The maximum value of the function f is 8.

Comments