Q.10
Two identical plates P and Q, radiating as perfect black bodies, are kept in vacuum at constant absolute temperatures Tp and Tq, respectively, with Tq<Tp, as shown in Fig. 1. The radiated power transferred per unit area from P to Q is W0. Subsequently, two more plates, identical to P and Q, are introduced between P and Q, as shown in Fig. 2. Assume that heat transfer takes place only between adjacent plates. If the power transferred per unit area in the direction from P to Q (Fig. 2) in the steady state is Ws, then the ratio W0Ws is ______.

Figures:

  • Fig. 1:

    PW0Q

    Temperatures: Tp (left), Tq (right).

  • Fig. 2:

    PWsPlate 1WsPlate 2WsQ

    Temperatures: Tp (left), T1 (middle 1), T2 (middle 2), Tq (right).

Given:

  • All plates are perfect black bodies.

  • Heat transfer occurs only between adjacent plates.

  • Steady-state conditions apply in Fig. 2.

Answer: 3


Solution:

1. Key Concepts

  • Stefan-Boltzmann Law: The power radiated per unit area by a black body is W=σT4, where σ is the Stefan-Boltzmann constant.

  • Net Power Transfer: Between two plates at temperatures T1 and T2 (T1>T2), the net power transferred per unit area is:

    W=σ(T14T24).

2. Calculate W0 (Fig. 1)

For the two-plate system (Fig. 1), the power transferred from P to Q is:

W0=σ(Tp4Tq4).

3. Calculate Ws (Fig. 2)

In the four-plate system (Fig. 2), let the steady-state temperatures of the two intermediate plates be T1 and T2. Since heat transfer occurs only between adjacent plates, the power transferred per unit area between each pair must be equal in steady state:

Ws=σ(Tp4T14)=σ(T14T24)=σ(T24Tq4).

This implies:

Tp4T14=T14T24=T24Tq4.

Let Tp4T14=Δ. Then:

T14=Tp4Δ,T24=T14Δ=Tp42Δ,Tq4=T24Δ=Tp43Δ.

Thus:

Δ=Tp4Tq43.

The power transferred per unit area Ws is:

Ws=σΔ=σ(Tp4Tq43)=W03.

4. Compute the Ratio W0Ws

From the above results:

W0Ws=σ(Tp4Tq4)σ(Tp4Tq4)3=3.

5. Final Answer

The ratio W0Ws is:

\boxed{3}

Comments