Math JEE Adv. 2025 paper 1

 

To determine the number of reflexive and symmetric relations R on the set {a,b,c,d,e,f} that contain exactly 10 elements, we follow these steps:

Step 1: Understand Reflexive and Symmetric Relations

  • Reflexive: The relation must include all pairs (x,x) for each x{a,b,c,d,e,f}. There are 6 such pairs.

  • Symmetric: If (x,y)R, then (y,x)R must also be included. Each unordered pair {x,y} (where xy) corresponds to two ordered pairs (x,y) and (y,x).

Step 2: Count the Total Possible Pairs

  • The total number of possible ordered pairs in {a,b,c,d,e,f}×{a,b,c,d,e,f} is 6×6=36.

  • Out of these, 6 are reflexive pairs (x,x).

  • The remaining 366=30 pairs are non-reflexive, which come in symmetric pairs (x,y) and (y,x). Thus, there are 15 unique unordered pairs.

Step 3: Determine the Number of Relations

  • A reflexive relation must include all 6 reflexive pairs.

  • To have a total of 10 elements, the relation must include 106=4 additional non-reflexive pairs. Since the relation is symmetric, these must be added as symmetric pairs (x,y) and (y,x).

  • Each such addition counts as 2 elements, so we need to choose 2 unordered pairs (since 2×2=4 elements).

Step 4: Calculate the Number of Ways to Choose Pairs

  • The number of ways to choose 2 unordered pairs from the 15 available is:

    (152)=105.

Final Answer

The number of such relations R is 105.

Comments