Math JEE Adv. 2025 paper 1


 To determine which statement about the function 

f(x) is true, let's analyze each option step-by-step.

Given Function:

f(x)={22x2x2sin1xif x0,2if x=0.

Step 1: Differentiability at x=0

To check differentiability at x=0, compute the derivative using the limit definition:

f(0)=limh0f(h)f(0)h=limh022h2h2sin1h2h=limh0(2hhsin1h).

Since sin1h1, the term hsin1h approaches 0 as h0. Thus:

f(0)=0.

The function is differentiable at x=0, so Option (A) is false.

Step 2: Behavior on (0,δ)

Compute the derivative for x0:

f(x)=4x2xsin1x+cos1x.

For small x>0, the term cos1x oscillates between 1 and 1, making f(x) change sign infinitely often near x=0. Therefore, f is not decreasing on any interval (0,δ), so Option (B) is false.

Step 3: Behavior on (δ,0)

For x<0, the derivative f(x) also oscillates due to the cos1x term. This means f is not increasing on any interval (δ,0), making Option (C) true.

Step 4: Local Minima at x=0

For x0f(x)=22x2x2sin1x. Since sin1x1, we have:

f(x)22x2x2=23x2.

However, for x approaching 0, f(x) can be less than 2 (e.g., when sin1x=1f(x)=23x2, which is less than 2 for x0). Thus, x=0 is not a local minima, so Option (D) is false.

Conclusion:

The only true statement is Option (C).

Final Answer: C

Comments