Math JEE Adv. 2025 paper 1

 



To determine which statements are true, we'll analyze the functions fg, and their compositions gf and fg.


Function Definitions:

  1. f:NZ:

    f(n)={(n+1)/2if n is odd,(4n)/2if n is even.
  2. g:ZN:

    g(n)={3+2nif n0,2nif n<0.

Analysis of f:

  • One-One (Injective):

    • For odd nf(n)=n+12. This is injective since each odd n maps to a unique integer.

    • For even nf(n)=4n2. This is also injective since each even n maps to a unique integer.

    • However, f(1)=1 and f(4)=0, but f(3)=2 and f(2)=1. Here, f(1)=f(2)=1, so f is not one-one.

  • Onto (Surjective):

    • For any kZ, we can find nN such that f(n)=k:

      • If k1, take n=2k1 (odd).

      • If k0, take n=42k (even).

    • Thus, f is onto.

Conclusion for f:

  • Not one-one (since f(1)=f(2)=1).

  • Onto (as shown above).

This matches Statement (D).


Analysis of g:

  • One-One (Injective):

    • For n0g(n)=3+2n. This is injective.

    • For n<0g(n)=2n. This is also injective.

    • No overlaps between the two cases because g(n)3 for n0 and g(n)2 for n<0, with g(1)=2 and g(0)=3. Thus, g is one-one.

  • Onto (Surjective):

    • The range of g for n0 is {3,5,7,}.

    • The range of g for n<0 is {2,4,6,}.

    • The number 1 is not in the range of g, so g is not onto.

Conclusion for g:

  • One-one (as shown above).

  • Not onto (since 1 is not in the range).

This contradicts Statement (C).


Analysis of gf:

Compute gf for nN:

  • If n is odd:

    g(f(n))=g(n+12)=3+2(n+12)=n+4.
  • If n is even:

    g(f(n))=g(4n2).
    • If 4n20 (i.e., n4):

      g(4n2)=3+2(4n2)=7n.
    • If 4n2<0 (i.e., n>4):

      g(4n2)=2(4n2)=n4.

Behavior of gf:

  • For odd ngf(n)=n+4. This is injective but not surjective (e.g., 1537, etc., missing many natural numbers).

  • For even ngf(n)=7n (if n4) or n4 (if n>4). This is not injective (e.g., n=2 and n=6 both map to 5) and not surjective.

Conclusion for gf:

  • Not one-one (due to overlaps like gf(2)=gf(6)=5).

  • Not onto (many natural numbers are not in the range).

This matches Statement (A).


Analysis of fg:

Compute fg for nZ:

  • If n0:

    f(g(n))=f(3+2n).
    • Since 3+2n is odd, f(3+2n)=3+2n+12=n+2.

  • If n<0:

    f(g(n))=f(2n).
    • Since 2n is even, f(2n)=4(2n)2=2+n.

Behavior of fg:

  • For n0fg(n)=n+2. This is injective.

  • For n<0fg(n)=2+n. This is also injective.

  • The entire range covers all integers 2 (from n0) and all integers 1 (from n<0), so fg is onto.

However, fg(0)=2 and fg(1)=1, but fg(2)=0, etc. There are no overlaps, so fg is one-one.

Conclusion for fg:

  • One-one (no overlaps in outputs).

  • Onto (covers all integers).

This contradicts Statement (B).


Final Answer:

The true statements are (A) and (D).

Answer: A,D

Comments