Math JEE Adv. 2025 paper 1

 

To find the coefficient of x3 in h(x)=f(x+1)g(x+2), we'll follow these steps:

  1. Expand f(x+1):

    f(x+1)=a1+10(x+1)+a2(x+1)2+a3(x+1)3+(x+1)4

    Expanding each term:

    (x+1)2=x2+2x+1(x+1)3=x3+3x2+3x+1(x+1)4=x4+4x3+6x2+4x+1

    Substituting back:

    f(x+1)=a1+10x+10+a2(x2+2x+1)+a3(x3+3x2+3x+1)+x4+4x3+6x2+4x+1

    Combine like terms:

    f(x+1)=x4+(4+a3)x3+(6+3a3+a2)x2+(10+2a2+3a3+4)x+(a1+10+a2+a3+1)

    Simplify:

    f(x+1)=x4+(4+a3)x3+(6+3a3+a2)x2+(14+2a2+3a3)x+(a1+11+a2+a3)
  2. Expand g(x+2):

    g(x+2)=b1+3(x+2)+b2(x+2)2+b3(x+2)3+(x+2)4

    Expanding each term:

    (x+2)2=x2+4x+4(x+2)3=x3+6x2+12x+8(x+2)4=x4+8x3+24x2+32x+16

    Substituting back:

    g(x+2)=b1+3x+6+b2(x2+4x+4)+b3(x3+6x2+12x+8)+x4+8x3+24x2+32x+16

    Combine like terms:

    g(x+2)=x4+(8+b3)x3+(24+6b3+b2)x2+(3+4b2+12b3+32)x+(b1+6+4b2+8b3+16)

    Simplify:

    g(x+2)=x4+(8+b3)x3+(24+6b3+b2)x2+(35+4b2+12b3)x+(b1+22+4b2+8b3)
  3. Compute h(x)=f(x+1)g(x+2):

    h(x)=[x4+(4+a3)x3+(6+3a3+a2)x2+(14+2a2+3a3)x+(a1+11+a2+a3)][x4+(8+b3)x3+(24+6b3+b2)x2+(35+4b2+12b3)x+(b1+22+4b2+8b3)]

    Simplify by subtracting corresponding terms:

    h(x)=[(4+a38b3)]x3+(lower order terms)

    The coefficient of x3 is:

    4+a38b3=4+a3b3
  4. Determine a3b3:
    Since f(x)g(x) for all xR, the polynomials f(x) and g(x) are not identical. However, the difference h(x) must satisfy certain conditions. By comparing the coefficients of x3 in h(x), we find:

    4+a3b3=4a3b3=0

    Therefore, the coefficient of x3 in h(x) is:

    4+0=4

Final Answer: C

Comments