To find the coefficient of x3 in h(x)=f(x+1)−g(x+2), we'll follow these steps:
Expand f(x+1):
f(x+1)=a1+10(x+1)+a2(x+1)2+a3(x+1)3+(x+1)4Expanding each term:
(x+1)2=x2+2x+1(x+1)3=x3+3x2+3x+1(x+1)4=x4+4x3+6x2+4x+1Substituting back:
f(x+1)=a1+10x+10+a2(x2+2x+1)+a3(x3+3x2+3x+1)+x4+4x3+6x2+4x+1Combine like terms:
f(x+1)=x4+(4+a3)x3+(6+3a3+a2)x2+(10+2a2+3a3+4)x+(a1+10+a2+a3+1)Simplify:
f(x+1)=x4+(4+a3)x3+(6+3a3+a2)x2+(14+2a2+3a3)x+(a1+11+a2+a3)Expand g(x+2):
g(x+2)=b1+3(x+2)+b2(x+2)2+b3(x+2)3+(x+2)4Expanding each term:
(x+2)2=x2+4x+4(x+2)3=x3+6x2+12x+8(x+2)4=x4+8x3+24x2+32x+16Substituting back:
g(x+2)=b1+3x+6+b2(x2+4x+4)+b3(x3+6x2+12x+8)+x4+8x3+24x2+32x+16Combine like terms:
g(x+2)=x4+(8+b3)x3+(24+6b3+b2)x2+(3+4b2+12b3+32)x+(b1+6+4b2+8b3+16)Simplify:
g(x+2)=x4+(8+b3)x3+(24+6b3+b2)x2+(35+4b2+12b3)x+(b1+22+4b2+8b3)Compute h(x)=f(x+1)−g(x+2):
h(x)=[x4+(4+a3)x3+(6+3a3+a2)x2+(14+2a2+3a3)x+(a1+11+a2+a3)]−[x4+(8+b3)x3+(24+6b3+b2)x2+(35+4b2+12b3)x+(b1+22+4b2+8b3)]Simplify by subtracting corresponding terms:
h(x)=[(4+a3−8−b3)]x3+(lower order terms)The coefficient of x3 is:
4+a3−8−b3=−4+a3−b3Determine a3−b3:
Since f(x)=g(x) for all x∈R, the polynomials f(x) and g(x) are not identical. However, the difference h(x) must satisfy certain conditions. By comparing the coefficients of x3 in h(x), we find:
−4+a3−b3=−4⇒a3−b3=0Therefore, the coefficient of x3 in h(x) is:
−4+0=−4
Final Answer: C
Comments
Post a Comment