Math JEE Adv. 2025 paper 1


 To find 

P(T), where T is the event that S3 can solve the problem, we'll analyze the given probabilities step-by-step.

Step 1: Define Probabilities

Let:

  • P(S1)=p1,

  • P(S2)=p2,

  • P(S3)=p3.

Step 2: Interpret Given Probabilities

  1. Event U: At least one of S1,S2,S3 can solve the problem.

    P(U)=1(1p1)(1p2)(1p3)=12.

    This implies:

    (1p1)(1p2)(1p3)=12.
  2. Event V: S1 can solve the problem, given that neither S2 nor S3 can solve it.

    P(V)=P(S1S2S3)P(S2S3)=p1(1p2)(1p3)(1p2)(1p3)=p1=110.

    So, p1=110.

  3. Event W: S2 can solve the problem and S3 cannot.

    P(W)=p2(1p3)=112.

Step 3: Solve for p2 and p3

From P(U):

(1p1)(1p2)(1p3)=12.

Substitute p1=110:

(1110)(1p2)(1p3)=12910(1p2)(1p3)=12.

Simplify:

(1p2)(1p3)=59.

From P(W):

p2(1p3)=112.

Let q=1p3. Then:

(1p2)q=59andp2q=112.

Divide the two equations:

(1p2)qp2q=591121p2p2=203.

Solve for p2:

1p2=203p21=233p2p2=323.

Substitute p2 back into p2q=112:

323q=112q=2336.

Since q=1p3:

1p3=2336p3=12336=1336.

Step 4: Conclusion

The probability P(T)=p3=1336.

Final Answer: A

Comments