Math JEE Adv. 2025 paper 1


 To solve the problem, we first find the explicit forms of the functions 

y1(x)y2(x), and y3(x) by solving their respective differential equations. Then, we evaluate the given limit.

Step 1: Solve for y1(x)

The differential equation is:

dy1dx(sinx)2y1=0,y1(1)=5.

This is a separable equation. Rewrite it as:

dy1y1=(sinx)2dx.

Integrate both sides:

lny1=(sinx)2dx+C.

Using the identity sin2x=1cos2x2:

lny1=12(1cos2x)dx+C=x2sin2x4+C.

Exponentiate to solve for y1:

y1(x)=ex2sin2x4+C=Aex2sin2x4,

where A=eC. Use the initial condition y1(1)=5:

5=Ae12sin24A=5e12+sin24.

Thus:

y1(x)=5ex12sin2xsin24.

Step 2: Solve for y2(x)

The differential equation is:

dy2dx(cosx)2y2=0,y2(1)=13.

Similarly:

dy2y2=(cosx)2dx.

Integrate both sides:

lny2=(cosx)2dx+C=x2+sin2x4+C.

Exponentiate:

y2(x)=Bex2+sin2x4,

where B=eC. Use the initial condition y2(1)=13:

13=Be12+sin24B=13e12sin24.

Thus:

y2(x)=13ex12+sin2xsin24.

Step 3: Solve for y3(x)

The differential equation is:

dy3dx(2x3x3)y3=0,y3(1)=35e.

Rewrite it as:

dy3y3=(2x31)dx.

Integrate both sides:

lny3=(2x31)dx=1x2x+C.

Exponentiate:

y3(x)=Ce1x2x,

where C=eC. Use the initial condition y3(1)=35e:

35e=Ce11=Ce2C=35e2.

Thus:

y3(x)=35e21x2x.

Step 4: Compute the Product y1(x)y2(x)y3(x)

Multiply the three solutions:

y1(x)y2(x)y3(x)=51335e(x12sin2xsin24)+(x12+sin2xsin24)+(21x2x).

Simplify the exponents:

=e(x1)+21x2x=e11x2.

Step 5: Evaluate the Limit

The limit to compute is:

limx0+y1(x)y2(x)y3(x)+2xe3xsinx=limx0+e11x2+2xe3xsinx.

As x0+e11x20 (since 1x2), and e3xsinxx (since sinxx and e3x1). Thus:

0+2xx=2.

Final Answer:

2

Comments