To solve the problem, we first find the explicit forms of the functions y1(x), y2(x), and y3(x) by solving their respective differential equations. Then, we evaluate the given limit.
Step 1: Solve for y1(x)
The differential equation is:
dxdy1−(sinx)2y1=0,y1(1)=5.This is a separable equation. Rewrite it as:
y1dy1=(sinx)2dx.Integrate both sides:
lny1=∫(sinx)2dx+C.Using the identity sin2x=21−cos2x:
lny1=21∫(1−cos2x)dx+C=2x−4sin2x+C.Exponentiate to solve for y1:
y1(x)=e2x−4sin2x+C=Ae2x−4sin2x,where A=eC. Use the initial condition y1(1)=5:
5=Ae21−4sin2⇒A=5e−21+4sin2.Thus:
y1(x)=5e2x−1−4sin2x−sin2.Step 2: Solve for y2(x)
The differential equation is:
dxdy2−(cosx)2y2=0,y2(1)=31.Similarly:
y2dy2=(cosx)2dx.Integrate both sides:
lny2=∫(cosx)2dx+C=2x+4sin2x+C.Exponentiate:
y2(x)=Be2x+4sin2x,where B=eC. Use the initial condition y2(1)=31:
31=Be21+4sin2⇒B=31e−21−4sin2.Thus:
y2(x)=31e2x−1+4sin2x−sin2.Step 3: Solve for y3(x)
The differential equation is:
dxdy3−(x32−x3)y3=0,y3(1)=5e3.Rewrite it as:
y3dy3=(x32−1)dx.Integrate both sides:
lny3=∫(x32−1)dx=−x21−x+C.Exponentiate:
y3(x)=C′e−x21−x,where C′=eC. Use the initial condition y3(1)=5e3:
5e3=C′e−1−1=C′e−2⇒C′=53e2.Thus:
y3(x)=53e2−x21−x.Step 4: Compute the Product y1(x)y2(x)y3(x)
Multiply the three solutions:
y1(x)y2(x)y3(x)=5⋅31⋅53e(2x−1−4sin2x−sin2)+(2x−1+4sin2x−sin2)+(2−x21−x).Simplify the exponents:
=e(x−1)+2−x21−x=e1−x21.Step 5: Evaluate the Limit
The limit to compute is:
x→0+lime3xsinxy1(x)y2(x)y3(x)+2x=x→0+lime3xsinxe1−x21+2x.As x→0+, e1−x21→0 (since −x21→−∞), and e3xsinx≈x (since sinx≈x and e3x≈1). Thus:
x0+2x=2.Final Answer:
2
Comments
Post a Comment