Math JEE Adv. 2025 paper 1

 

To solve the problem, we need to find the number of 3×3 invertible integer matrices Q that satisfy the following conditions:

  1. Orthogonality: Q1=QT, which implies that Q is an orthogonal matrix.

  2. Commutation with P: PQ=QP, where P is the given diagonal matrix.

Step 1: Analyze the Matrix P

The matrix P is given by:

P=(200020003).

This is a diagonal matrix with distinct eigenvalues 2 (with multiplicity 2) and 3.

Step 2: Commutation Condition PQ=QP

For a matrix Q to commute with P, it must preserve the eigenspaces of P. Since P has two distinct eigenvalues (2 and 3), Q must be block-diagonal with respect to these eigenspaces. Specifically:

  • The first two rows and columns of Q correspond to the eigenvalue 2.

  • The third row and column correspond to the eigenvalue 3.

Thus, Q must have the form:

Q=(A00b),

where:

  • A is a 2×2 orthogonal matrix (since Q is orthogonal).

  • b is a scalar such that b2=1 (to preserve orthogonality), implying b=±1.

Step 3: Orthogonal 2×2 Matrices with Integer Entries

The 2×2 orthogonal matrices with integer entries are precisely the signed permutation matrices (i.e., matrices with exactly one non-zero entry of ±1 in each row and column). There are 8 such matrices:

  1. The identity matrix:

    (1001).
  2. The negation of the identity matrix:

    (1001).
  3. The two permutation matrices:

    (0110),(0110).
  4. The four signed permutation matrices with one ±1 and one 1:

    (1001),(1001),(0110),(0110).

Step 4: Combine with the Scalar b

For each of the 8 possible 2×2 matrices A, we have two choices for b (b=1 or b=1). This gives a total of:

8 (for A)×2 (for b)=16 possible matrices Q.

Step 5: Verify Invertibility

All orthogonal matrices are invertible by definition, so all 16 matrices Q are invertible.

Conclusion

The number of 3×3 invertible integer matrices Q satisfying the given conditions is 16.

Final Answer: C

Comments