Math JEE Adv. 2025 paper 1

 

To solve the problem, we need to find the real numbers α and β such that the given limit equals 2. Here's the step-by-step solution:

Given Limit:

limx01x3(α20x11t2dt+βxcosx)=2

Step 1: Expand the Integrand

The integrand 11t2 can be expanded using the geometric series for t<1:

11t2=1+t2+t4+

Integrate term by term:

0x11t2dt=0x(1+t2+t4+)dt=x+x33+x55+

Step 2: Substitute the Integral into the Limit

Substitute the expanded integral and the Taylor series for cosx (cosx=1x22+) into the limit:

α2(x+x33+)+βx(1x22+)

Divide by x3:

1x3(α2x+α6x3+βxβ2x3+)

Simplify:

α2x2+α6+βx2β2+

Step 3: Eliminate Lower Order Terms

For the limit to exist as x0, the coefficients of 1x2 must cancel out:

α2+β=0α=2β

Step 4: Evaluate the Remaining Terms

After cancellation, the remaining terms are:

α6β2=2

Substitute α=2β:

2β6β2=2β3β2=2

Combine like terms:

5β6=2β=125

Then, α=2β=245.

Step 5: Compute α+β

α+β=245125=125=2.4

Final Answer:

2.4

Comments