To solve the problem, we'll analyze the given frequency distribution step-by-step and match the entries in List-I to List-II.
Given Data:
Values (x): 4, 5, 8, 9, 6, 12, 11
Frequencies (f): 5, f1, f2, 2, 1, 1, 3
Total frequency: 19
Median: 6
Step 1: Determine f1 and f2
The total frequency is:
5+f1+f2+2+1+1+3=19⟹f1+f2=7.
Since the median is 6, the cumulative frequency up to the median must cover the 10th observation (as 219+1=10).
Cumulative Frequencies:
For the median to be 6, the 10th observation must fall in the 6-value category:
5+f1≤10≤6+f1⟹f1=4.
Thus, f2=7−f1=3.
Verification of 7f1+9f2:
7(4)+9(3)=28+27=55.
So, (P)→55.
Step 2: Compute the Mean (μ)
First, calculate the sum of x×f:
4×5+5×4+8×3+9×2+6×1+12×1+11×3=20+20+24+18+6+12+33=133.
The mean is:
μ=19133=7.
Step 3: Compute Mean Deviation about the Mean (α)
Calculate ∣x−μ∣×f for each value:
∣4−7∣×5=15,∣5−7∣×4=8,∣8−7∣×3=3,∣9−7∣×2=4,∣6−7∣×1=1,∣12−7∣×1=5,∣11−7∣×3=12.
Total deviation:
15+8+3+4+1+5+12=48.
Thus, 19α=48, so (Q)→48.
Step 4: Compute Mean Deviation about the Median (β)
The median is 6. Calculate ∣x−6∣×f:
∣4−6∣×5=10,∣5−6∣×4=4,∣8−6∣×3=6,∣9−6∣×2=6,∣6−6∣×1=0,∣12−6∣×1=6,∣11−6∣×3=15.
Total deviation:
10+4+6+6+0+6+15=47.
Thus, 19β=47, so (R)→47.
Step 5: Compute Variance (σ2)
Calculate (x−μ)2×f:
(4−7)2×5=45,(5−7)2×4=16,(8−7)2×3=3,(9−7)2×2=8,(6−7)2×1=1,(12−7)2×1=25,(11−7)2×3=48.
Total squared deviation:
45+16+3+8+1+25+48=146.
Thus, 19σ2=146, so (S)→146.
Final Matching:
(P)→55
(Q)→48 (3)
(R)→47 (2)
(S)→146 (1)
Correct Option: C
C
Comments
Post a Comment