Math JEE Adv. 2025 paper 1

 

To solve the problem, we'll follow these steps:

Step 1: Assign Coordinates

Let’s place the triangle ΔPQR in the plane for simplicity:

  • Let P=(0,0)Q=(1,0), and R=(0,1).

Step 2: Find the Coordinates of S

Given the vector equation:

SP+5SQ+6SR=0,

we express the vectors in terms of coordinates:

SP=PS=(0x,0y),SQ=QS=(1x,0y),SR=RS=(0x,1y).

Substituting into the equation:

(0x,0y)+5(1x,0y)+6(0x,1y)=(0,0).

This gives the system:

x+5(1x)+6(x)=0andy+5(y)+6(1y)=0.

Solving for x and y:

x+55x6x=0    12x+5=0    x=512,y5y+66y=0    12y+6=0    y=12.

Thus, S=(512,12).

Step 3: Find the Midpoints E and F

  • E is the midpoint of PR:

    E=(0+02,0+12)=(0,0.5).

]

  • F is the midpoint of QR:

    F=(1+02,0+12)=(0.5,0.5).

]

Step 4: Compute the Lengths

  • Length of EF:

    EF=(0.50)2+(0.50.5)2=0.5.

]

  • Length of ES:

    ES=(5120)2+(1212)2=5120.4167.

]

Step 5: Calculate the Ratio

Length of EFLength of ES=0.50.41671.2.

Final Answer

The value is 1.2.

Note: The answer falls within the range [1.15,1.25] as specified.

Comments