Let's analyze the problem step by step:

Given:

  • Electrostatic energy: E=35Z(Z1)e24πϵ0R

  • Masses: neutron (mn) = 1.008665 u, 11H (mH) = 1.007825 u, 715N = 15.000109 u, 815O = 15.003065 u.

  • 1 u = 931.5 MeV/c2

  • e2/(4πϵ0)=1.44 MeV·fm

  • Radii of 715N and 815O are the same.

  • The difference in binding energies (BE) is purely due to electrostatic energy.

We need to find the radius R.

Step 1: Binding Energy (BE) Calculation
The binding energy for a nucleus with Z protons and N neutrons is:

BE=[ZmH+NmnMnucleus]c2

For 715NZ=7,N=8

BEN=[7×mH+8×mnMN]c2

For 815OZ=8,N=7

BEO=[8×mH+7×mnMO]c2

Step 2: Difference in Binding Energies

ΔBE=BEOBEN

Substitute:

ΔBE=([8mH+7mnMO][7mH+8mnMN])c2=[(8mH7mH)+(7mn8mn)(MOMN)]c2=[mHmn(MOMN)]c2

Now plug in the masses (in u):
mH=1.007825 u, mn=1.008665 u, MO=15.003065 u, MN=15.000109 u.
So,

MOMN=15.00306515.000109=0.002956umHmn=1.0078251.008665=0.000840u

Thus,

ΔBE=[0.0008400.002956]×931.5MeV=[0.003796]×931.5MeV=3.535MeV

So, BEOBEN=3.535 MeV, meaning BEO<BEN by 3.535 MeV.

Step 3: Electrostatic Energy Difference
The electrostatic energy for a nucleus with proton number Z is:

Ees=35Z(Z1)e24πϵ0R

For 715NZ=7

Ees,N=3576e24πϵ0R=3542e24πϵ0R

For 815OZ=8

Ees,O=3587e24πϵ0R=3556e24πϵ0R

The difference in electrostatic energy:

ΔEes=Ees,OEes,N=35e24πϵ0R(5642)=3514e24πϵ0R

Given that the difference in binding energy is purely due to electrostatic energy, we have:

ΔBE=ΔEes

But note: Higher electrostatic energy reduces binding energy. So,

BEOBEN=(Ees,OEes,N)=ΔEes

Therefore:

ΔEes=3.535MeVΔEes=3.535MeV

So,

3514e24πϵ0R=3.535

Step 4: Solve for R
Given e2/(4πϵ0)=1.44 MeV·fm.
So,

35141.44R=3.535

Compute:

3514=425=8.4

So,

8.41.44R=3.53512.096R=3.535R=12.0963.5353.421fm

Thus, the radius is approximately 3.42 fm.

Final Answer:

3.42fm

Comments