Let's analyze the problem step by step:
Given:
Electrostatic energy: E=534πϵ0RZ(Z−1)e2
Masses: neutron (mn) = 1.008665 u, 11H (mH) = 1.007825 u, 715N = 15.000109 u, 815O = 15.003065 u.
1 u = 931.5 MeV/c2
e2/(4πϵ0)=1.44 MeV·fm
Radii of 715N and 815O are the same.
The difference in binding energies (BE) is purely due to electrostatic energy.
We need to find the radius R.
Step 1: Binding Energy (BE) Calculation
The binding energy for a nucleus with Z protons and N neutrons is:
BE=[ZmH+Nmn−Mnucleus]c2For 715N: Z=7,N=8
BEN=[7×mH+8×mn−MN]c2For 815O: Z=8,N=7
BEO=[8×mH+7×mn−MO]c2Step 2: Difference in Binding Energies
ΔBE=BEO−BENSubstitute:
ΔBE=([8mH+7mn−MO]−[7mH+8mn−MN])c2=[(8mH−7mH)+(7mn−8mn)−(MO−MN)]c2=[mH−mn−(MO−MN)]c2Now plug in the masses (in u):
mH=1.007825 u, mn=1.008665 u, MO=15.003065 u, MN=15.000109 u.
So,
MO−MN=15.003065−15.000109=0.002956umH−mn=1.007825−1.008665=−0.000840uThus,
ΔBE=[−0.000840−0.002956]×931.5MeV=[−0.003796]×931.5MeV=−3.535MeVSo, BEO−BEN=−3.535 MeV, meaning BEO<BEN by 3.535 MeV.
Step 3: Electrostatic Energy Difference
The electrostatic energy for a nucleus with proton number Z is:
Ees=534πϵ0RZ(Z−1)e2For 715N: Z=7
Ees,N=534πϵ0R7⋅6⋅e2=534πϵ0R42⋅e2For 815O: Z=8
Ees,O=534πϵ0R8⋅7⋅e2=534πϵ0R56⋅e2The difference in electrostatic energy:
ΔEes=Ees,O−Ees,N=534πϵ0Re2(56−42)=534πϵ0R14⋅e2Given that the difference in binding energy is purely due to electrostatic energy, we have:
ΔBE=ΔEesBut note: Higher electrostatic energy reduces binding energy. So,
BEO−BEN=−(Ees,O−Ees,N)=−ΔEesTherefore:
−ΔEes=−3.535MeVΔEes=3.535MeVSo,
534πϵ0R14⋅e2=3.535Step 4: Solve for R
Given e2/(4πϵ0)=1.44 MeV·fm.
So,
53⋅R14⋅1.44=3.535Compute:
53⋅14=542=8.4So,
8.4⋅R1.44=3.535R12.096=3.535R=3.53512.096≈3.421fmThus, the radius is approximately 3.42 fm.
Final Answer:
3.42fm
Comments
Post a Comment