Question No. 40

Let bi>1 for i=1,2,,101. Suppose logeb1,logeb2,,logeb101 are in Arithmetic Progression (A.P.) with the common difference loge2. Suppose a1,a2,,a101 are in A.P. such that a1=b1 and a51=b51. If t=b1+b2++b51 and s=a1+a2++a51, then
(A) s>t and a101>b101
(B) s>t and a101<b101
(C) s<t and a101>b101
(D) s<t and a101<b101


Solution:

Step 1: Analyze the Sequence bi

Given: logeb1,logeb2,,logeb101 are in A.P. with common difference d=loge2.
So,

logebk=logeb1+(k1)loge2=loge(b12k1)

Thus,

bk=b12k1

This is a geometric progression (G.P.) with first term b1 and common ratio 2.

Step 2: Analyze the Sequence ai

Given: a1,a2,,a101 are in A.P. with a1=b1 and a51=b51.
Let the common difference of the A.P. be δ. Then,

ak=a1+(k1)δ

In particular,

a51=a1+50δ=b51

But from the G.P.,

b51=b1250

So,

a1+50δ=a125050δ=a1(2501)δ=a1(2501)50

Step 3: Compare s and t

We have:

  • t=k=151bk=k=151a12k1=a1(2511)

  • s=k=151ak=k=151[a1+(k1)δ]=51a1+δk=151(k1)=51a1+δ50512=51a1+1275δ

Substitute δ:

s=51a1+1275a1(2501)50=51a1+25.5a1(2501)=a1(51+25.525025.5)=a1(25.5+25.5250)=25.5a1(1+250)

Now, compare s and t:

t=a1(2511)=a1(22501)s=25.5a1(1+250)=512a1(1+250)

Since a1>1, we can ignore it for inequality.
Note: 2511 vs 512(1+250)
Multiply both by 2:

  • 2t=2a1(2511)=2a1(2511)

  • 2s=51a1(1+250)

Now, 251=2250, so:

2t=2a1(22501)=4a12502a12s=51a1+51a1250

Clearly, for large 250, the term 51a1250 in 2s is greater than 4a1250 in 2t, since 51>4. Thus, s>t.

Step 4: Compare a101 and b101

  • a101=a1+100δ=a1+100a1(2501)50=a1+2a1(2501)=a1(1+2512)=a1(2511)

  • b101=b12100=a12100

Clearly, 2100>2511, so b101>a101.

Step 5: Conclusion

  • s>t

  • a101<b101


Final Answer:

B

Comments