Question No. 5

A gas is enclosed in a cylinder with a movable frictionless piston. Its initial thermodynamic state at pressure Pi=105Pa and volume Vi=103m3 changes to a final state at Pf=(1/32)×105Pa and Vf=8×103m3 in an adiabatic quasi-static process, such that P3V5=constant. Consider another thermodynamic process that brings the system from the same initial state to the same final state in two steps: an isobaric expansion at Pi followed by an isochoric (isovolumetric) process at volume Vf. The amount of heat supplied to the system in the two-step process is approximately
(A) 112 J
(B) 294 J
(C) 588 J
(D) 813 J


Solution:

Step 1: Identify the gas type from the adiabatic process

Given: P3V5=constant
For an adiabatic process, PVγ=constant.
Comparing exponents: γ=53
This corresponds to a monatomic gas (e.g., ideal gas with 3 degrees of freedom).
For a monatomic gas:

  • Cv=32R

  • Cp=52R


Step 2: Two-step process (isobaric + isochoric)

Step A: Isobaric expansion at Pi=105Pa

  • Initial volume: Vi=103m3

  • Final volume: Vf=8×103m3

  • Work done: W1=PiΔV=Pi(VfVi)=105×(8×103103)=105×7×103=700J

  • Change in internal energy: ΔU1=nCvΔT

Step B: Isochoric process at Vf

  • Pressure changes from Pi to Pf=132×105Pa

  • Work done: W2=0 (since volume constant)

  • Change in internal energy: ΔU2=nCvΔT


Step 3: Compute total change in internal energy (ΔU)

Since internal energy is a state function, ΔU depends only on initial and final states.
For an ideal gas: ΔU=nCvΔT=32nRΔT=32(PfVfPiVi)

Calculate PiVi and PfVf:

  • PiVi=105×103=100J

  • PfVf=(132×105)×(8×103)=132×105×8×103=132×800=25J

So,

ΔU=32(PfVfPiVi)=32(25100)=32×(75)=112.5J

Step 4: Compute total work done (W)

  • Work in isobaric step: W1=700J

  • Work in isochoric step: W2=0

  • Total work: W=W1+W2=700J


Step 5: Compute heat supplied (Q) using first law

Q=ΔU+W=112.5+700=587.5J588J

Final Answer:

588

Comments