Question No. 8

In an experiment to determine the acceleration due to gravity g, the formula used for the time period of a periodic motion is T=2π7(Rr)5g. The values of R and r are measured to be (60±1) mm and (10±1) mm, respectively. In five successive measurements, the time period is found to be 0.52 s, 0.56 s, 0.57 s, 0.54 s and 0.59 s. The least count of the watch used for the measurement of time period is 0.01 s. Which of the following statement(s) is(are) true?
(A) The error in the measurement of r is 10%
(B) The error in the measurement of T is 3.57%
(C) The error in the measurement of T is 2%
(D) The error in the determined value of g is 11%


Solution:

Step 1: Error in r

Given: r=(10±1) mm
Absolute error, Δr=1 mm
Percentage error:

Δrr×100=110×100=10%

So, option (A) is true.

Step 2: Error in T

Time period measurements: 0.52 s, 0.56 s, 0.57 s, 0.54 s, 0.59 s
Least count = 0.01 s
Mean time period:

Tmean=0.52+0.56+0.57+0.54+0.595=2.785=0.556s0.56s

Absolute error in each reading (using mean absolute deviation):

0.520.56=0.04,0.560.56=0.00,0.570.56=0.01,0.540.56=0.02,0.590.56=0.03

Mean absolute error:

ΔT=0.04+0.00+0.01+0.02+0.035=0.105=0.02s

Percentage error in T:

ΔTTmean×100=0.020.56×1003.57%

So, option (B) is true and option (C) is false.

Step 3: Error in g

Given formula:

T=2π7(Rr)5g

Squaring both sides:

T2=4π275Rrg    g=28π25RrT2

Let D=Rr. Then:

g=kDT2,wherek=28π25

Percentage error in g:

Δgg=ΔDD+2ΔTT

Now, R=(60±1) mm, r=(10±1) mm
So, D=Rr=6010=50 mm
ΔD=ΔR+Δr=1+1=2 mm

ΔDD=250=0.04

From above, ΔTT=0.0357
Thus:

Δgg=0.04+2×0.0357=0.04+0.0714=0.1114

Percentage error in g:

Δgg×10011.14%11%

So, option (D) is true.


Final Answer:

A, B, D

Comments