Question No. 37
Let P=[1004101641] and I be the identity matrix of order 3. If Q=[qij] is a matrix such that P50Q=I, then q31+q32q21 equals
(A) 52
(B) 103
(C) 201
(D) 205


Solution:

Step 1: Express P as I+A

Let A=PI=[0004001640].
Then P=I+A.

Step 2: Compute powers of A

  • A2=[0004001640][0004001640]=[0000001600]

  • A3=A2A=[0000001600][0004001640]=[000000000]
    So, An=0 for n3.

Step 3: Compute P50 using binomial expansion

Since A is nilpotent with A3=0,

P50=(I+A)50=I+(501)A+(502)A2=I+50A+50492A2=I+50A+1225A2

Step 4: Write P50I=Q

Given P50Q=I    Q=P50I.
So,

Q=50A+1225A2

Step 5: Compute 50A and 1225A2

  • 50A=50[0004001640]=[000200008002000]

  • 1225A2=1225[0000001600]=[0000001960000]

So,

Q=[00020000800+196002000]=[00020000204002000]

Step 6: Find the required ratio

We need:

q31+q32q21=20400+200200=20600200=103


Final Answer:

103

Comments