Question No. 39The value of ∑k=113sin(4π+6(k−1)π)sin(4π+6kπ)1 is equal to
(A) 3−3
(B) 2(3−3)
(C) 2(3−1)
(D) 2(2+3)
Solution:
Step 1: General Term
Let the general term be:
Tk=sin(4π+6(k−1)π)sin(4π+6kπ)1Step 2: Use Trigonometric Identity
We use the identity:
sinAsinB1=cos(A−B)−cos(A+B)2⋅21⋅2But a more direct approach is to use the difference of cotangents. Note:
cotA−cotB=sinAsinBsin(B−A)So,
sinAsinB1=sin(B−A)cotA−cotBHere, let:
A=4π+6(k−1)π,B=4π+6kπThen,
B−A=6πSo,
Tk=sin(6π)cot(4π+6(k−1)π)−cot(4π+6kπ)=21cot(4π+6(k−1)π)−cot(4π+6kπ)Tk=2[cot(4π+6(k−1)π)−cot(4π+6kπ)]Step 3: Telescoping Series
Let:
Vk−1=2cot(4π+6(k−1)π),Vk=2cot(4π+6kπ)Then:
Tk=Vk−1−VkThe sum from k=1 to 13 is:
S=k=1∑13Tk=(V0−V1)+(V1−V2)+⋯+(V12−V13)=V0−V13So,
S=2cot(4π)−2cot(4π+613π)Step 4: Simplify the Angles
cot(4π)=14π+613π=123π+26π=1229πBut we can reduce this modulo π:
1229π=2π+125π(since 2π=1224π)So,
cot(1229π)=cot(125π)Now, 125π=75∘, and:
cot(75∘)=cot(45∘+30∘)=cot45∘+cot30∘cot45∘cot30∘−1=1+31⋅3−1=3+13−1Rationalize:
=3−1(3−1)2=23−23+1=24−23=2−3Step 5: Compute the Sum
S=2(1)−2(2−3)=2−4+23=23−2=2(3−1)
Final Answer:
2(3−1)
Comments
Post a Comment