Question No. 39

The value of k=1131sin(π4+(k1)π6)sin(π4+kπ6) is equal to

(A) 33
(B) 2(33)
(C) 2(31)
(D) 2(2+3)


Solution:

Step 1: General Term

Let the general term be:

Tk=1sin(π4+(k1)π6)sin(π4+kπ6)

Step 2: Use Trigonometric Identity

We use the identity:

1sinAsinB=2cos(AB)cos(A+B)122

But a more direct approach is to use the difference of cotangents. Note:

cotAcotB=sin(BA)sinAsinB

So,

1sinAsinB=cotAcotBsin(BA)

Here, let:

A=π4+(k1)π6,B=π4+kπ6

Then,

BA=π6

So,

Tk=cot(π4+(k1)π6)cot(π4+kπ6)sin(π6)=cot(π4+(k1)π6)cot(π4+kπ6)12Tk=2[cot(π4+(k1)π6)cot(π4+kπ6)]

Step 3: Telescoping Series

Let:

Vk1=2cot(π4+(k1)π6),Vk=2cot(π4+kπ6)

Then:

Tk=Vk1Vk

The sum from k=1 to 13 is:

S=k=113Tk=(V0V1)+(V1V2)++(V12V13)=V0V13

So,

S=2cot(π4)2cot(π4+13π6)

Step 4: Simplify the Angles

cot(π4)=1π4+13π6=3π+26π12=29π12

But we can reduce this modulo π:

29π12=2π+5π12(since 2π=24π12)

So,

cot(29π12)=cot(5π12)

Now, 5π12=75, and:

cot(75)=cot(45+30)=cot45cot301cot45+cot30=1311+3=313+1

Rationalize:

=(31)231=323+12=4232=23

Step 5: Compute the Sum

S=2(1)2(23)=24+23=232=2(31)

Final Answer:

2(31)

Comments